几何图形解题方法.doc

几何图形解题方法.doc

ID:57316429

大小:157.00 KB

页数:15页

时间:2020-08-11

几何图形解题方法.doc_第1页
几何图形解题方法.doc_第2页
几何图形解题方法.doc_第3页
几何图形解题方法.doc_第4页
几何图形解题方法.doc_第5页
资源描述:

《几何图形解题方法.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、几何图形解题方法在实际生产和生活中,几何形体往往不是以标准的形状出现,而是以比较复杂的组合图形出现,很难直接利用公式计算其面积或体积。如果在保持图形的面积或体积不变的前提下,对图形进行适当的变换,就容易找出计算其面积或体积的方法。(一)添辅助线法有些组合图形按一般的思考方法好像已知条件不足,很难解答。如果在图形中添加适当的辅助线,就可能找到解题的途径。辅助线一般用虚线表示。*例1求图40-1阴影部分的面积。(单位:平方米)(适于三年级程度)                解:图40-1中,右边两个部分的面

2、积分别是20平方米和30平方米,所以可如图40-2那样添上三条辅助线,把整个长方形分成5等份。这样图中右边的五个小长方形的面积相等。同时,左边五个小长方形的面积也相等。左边每个小长方形的面积是:25÷2=12.5(平方米)所以,阴影部分的面积是:12.5×3=37.5(平方米)答略。*例2如图40-3,一个平行四边形被分成两个部分,它们的面积差是10平方厘米,高是5厘米。求EC的长。(单位:厘米)(适于五年级程度)解:如图40-4,过E点作AB的平行线EF,则△AEF与△ABE是等底等高的三角形。所以,△

3、AEF的面积与△ABE的面积相等。              小平行四边形EFDC的面积就是10平方厘米。因为它的高是5厘米,所以,EC=10÷5=2(厘米)答:EC长2厘米。*例3如图40-5,已知图中四边形两条边的长度和三个角的度数,求这个四边形的面积。(单位:厘米)(适于五年级程度)解:这是一个不规则的四边形,无法直接计算它的面积。如图40-6,把AD和BC两条线段分别延长,使它们相交于E点。这样,四边形ABCD的面积就可以转化为△ABE的面积与△DCE的面积之差。                 

4、 在△ABE中,∠A是直角,∠B=45°,所以∠E=45°,即△ABE是等腰直角三角形。所以AB=AE=7(厘米),则△ABE的面积是:7×7÷2=24.5(平方厘米)在△DCE中,∠DCE是直角,∠E=45°,所以,∠CDE=45°,即△DCE是等腰直角三角形。所以,CD=CE=3厘米,则△DCE的面积是:3×3÷2=4.5(平方厘米)所以,四边形ABCD的面积是:24.5-4.5=20(平方厘米)答略。(二)分割法分割法是在一个复杂的几何图形中,添上一条或几条辅助线,把图形分割成若干个已学过的基本图形

5、,然后分别计算出各图形的面积或体积,再将所得结果相加的解题方法。例1计算图40-7的面积。(单位:厘米)(适于五年级程度)解:如图40-8,在图中添上一条辅助线,把图形分割为一个梯形和一个长方形,分别计算出它们的面积,再把两个面积相加。                [2+(8-4)]×(6-4)÷2+4×8=6+32=38(平方厘米)答:图形的面积是38平方厘米。例2图40-9中,ABCD是长方形,AB=40厘米,BC=60厘米,E、F、G、H是各边的中点。求图中阴影部分的面积。(适于五年级程度)解:如

6、图40-10,在图中添加辅助线EG,使阴影部分被分割成为两个面积相等的三角形。先计算出一个三角形的面积,再把它的面积乘以2。三角形的底是长方形的长,高是长方形的宽的一半。                 60×(40÷2)÷2×2=60×20=1200(平方厘米)答:阴影部分的面积是1200平方厘米。*例3求图40-11中各组合体的体积。(单位:厘米)(适于六年级程度)解:如图40-12,把各组合体分割为几个基本形体,然后分别求出每个基本形体的体积,再用加法、减法算出各组合体的体积。(三)割补法在计算一些

7、不规则的几何图形的面积时,把图形中凸出来的部分割下来,填补到相应的凹陷处,或较适当的位置,使图形组合成一个或几个规则的形状,再计算面积的解题方法叫做割补法。例1求图40-13阴影部分的面积。(单位:厘米)(适于六年级程度)成了一个梯形如图40-14,这个梯形的面积就是图40-13中的阴影部分的面积。                      答:阴影部分的面积是45平方厘米。*例2求图40-15中阴影部分的面积。(单位:米)(适于六年级程度)16×16×2=512(平方米)答:阴影部分的面积是512平方米

8、。*例3图40-17中,ABCD是正方形,ED=DA=AF=2厘米。求图中阴影部分的面积。(适于六年级程度)解:经割补,把图40-17组合成图40-18。很容易看出,只要从正方形的面积中减去空白扇形的面积,便得到阴影部分的面积。                答:图中阴影部分的面积是2.43平方厘米。(四)平移法在看不出几何图形面积的计算方法时,通过把图形的某一部分向某一方向平行移动一定的距离,使图形重新组合成可以看出计算方法

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。