实际问题与二次函数导学案1.pdf

实际问题与二次函数导学案1.pdf

ID:57304297

大小:74.96 KB

页数:3页

时间:2020-08-11

实际问题与二次函数导学案1.pdf_第1页
实际问题与二次函数导学案1.pdf_第2页
实际问题与二次函数导学案1.pdf_第3页
资源描述:

《实际问题与二次函数导学案1.pdf》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、实际问题与二次函数导学案第1课时如何获得最大利润一、学习目标:能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值,发展解决问题的能力。基础扫描1.二次函数y=a(x-h)2+k的图象是一条,它的对称轴是,顶点坐标是.2.二次函数y=ax2+bx+c的图象是一条,它的对称轴是,顶点坐标是.当a>0时,抛物线开口向,有最点,函数有最值,是;当a<0时,抛物线开口向,有最点,函数有最值,是。3.二次函数y=2(x-3)2+5的对称轴是,顶点坐标是。当x=时,y的最值是。4.二次函数y=-3(x+4)2-1的对称轴是,顶点坐标是。当x=时,函数有最值

2、,是。5.二次函数y=2x2-8x+9的对称轴是,顶点坐标是.当x=时,函数有最值,是。一、自主探究问题1.已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。市场调查反映:如果调整价格,每涨价1元,每星期要少卖出10件。要想每周获得6090元的利润,该商品定价应为多少元?分析:没调价之前商场一周的利润为,设销售单价上调了x元,那么每件商品的利润可表示为,每周的销售量可表示为,一周的利润可表示为,要想获得6090元利润可列方程。若设商品定价为x元那么每件商品的利润可表示为,每周的销售量可表示为,一周的利润可表示为,要想获得6090元利润可列方程。二.合作交流问题2.已

3、知某商品的进价为每件40元。现在的售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;如何定价才能使利润最大?问题3.已知某商品的进价为每件40元。现在的售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每降价一元,每星期可多卖出20件。如何定价才能使利润最大?问题4.由问题2和问题3的解答,你认为如何定价才能使利润最大三、牛刀小试某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.售价提高多少元时,才

4、能在半个月内获得最大利润?四、创新学习某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.问增种多少棵橙子树,果园的总产量最高,若每个橙子市场售价约2元,果园的总产值最高约为多少?五、中考链接某超市经销一种销售成本为每件40元的商品。据市场调查分析,如果按每件50元销售,一周能售出500件;若销售单价每涨1元,每周销量就减少10件。设销售单价为x元(x≥50),一周的销售量为y件。(1)写出y与x的函数关系式(标明x的取值范围);(2)

5、设一周的销售利润为S,写出S与x的函数关系式,求出S的最大值,并确定当单价在什么范围内变化时,利润随单价的增大而增大?(3)若超市对该种商品投入不超过10000元的情况下,使得一周销售利润达到8000元,销售单价应定为多少元?

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。