线性判别分析LDA-文档资料课件.ppt

线性判别分析LDA-文档资料课件.ppt

ID:57290001

大小:515.50 KB

页数:23页

时间:2020-08-10

线性判别分析LDA-文档资料课件.ppt_第1页
线性判别分析LDA-文档资料课件.ppt_第2页
线性判别分析LDA-文档资料课件.ppt_第3页
线性判别分析LDA-文档资料课件.ppt_第4页
线性判别分析LDA-文档资料课件.ppt_第5页
资源描述:

《线性判别分析LDA-文档资料课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、线性判别分析(LDA)介绍线性判别分析(Linear Discriminant Analysis, LDA),也叫做Fisher线性判别(Fisher Linear Discriminant ,FLD),是模式识别的经典算法,1936年由RonaldFisher首次提出,并在1996年由Belhumeur引入模式识别和人工智能领域。基本思想线性判别分析的基本思想是将高维的模式样本投影到最佳鉴别矢量空间,以达到抽取分类信息和压缩特征空间维数的效果。投影后保证模式样本在新的子空间有最大的类间距离和最小的类内距离,即模式在该空间中有最佳的可分离性。因此,它是一种有效的特征抽取方法。使用这种方法能够使

2、投影后模式样本的类间散布矩阵最大,并且同时类内散布矩阵最小。LDALDA与PCA(主成分分析)都是常用的降维技术。PCA主要是从特征的协方差角度,去找到比较好的投影方式。LDA更多的是考虑了标注,即希望投影后不同类别之间数据点的距离更大,同一类别的数据点更紧凑。下面给出一个例子,说明LDA的目标:可以看到两个类别,一个绿色类别,一个红色类别。左图是两个类别的原始数据,现在要求将数据从二维降维到一维。直接投影到x1轴或者x2轴,不同类别之间会有重复,导致分类效果下降。右图映射到的直线就是用LDA方法计算得到的,可以看到,红色类别和绿色类别在映射之后之间的距离是最大的,而且每个类别内部点的离散程度

3、是最小的(或者说聚集程度是最大的)。LDA要说明白LDA,首先得弄明白线性分类器(LinearClassifier):因为LDA是一种线性分类器。对于K-分类的一个分类问题,会有K个线性函数:当满足条件:对于所有的j,都有Yk>Yj,的时候,我们就说x属于类别k。对于每一个分类,都有一个公式去算一个分值,在所有的公式得到的分值中,找一个最大的,就是所属的分类。权向量(weightvector)法向量(normalvector)阈值(threshold)偏置(bias)LDA上式实际上就是一种投影,是将一个高维的点投影到一条高维的直线上,LDA最求的目标是,给出一个标注了类别的数据集,投影到了一

4、条直线之后,能够使得点尽量的按类别区分开,当k=2即二分类问题的时候,如下图所示:红色的方形的点为0类的原始点、蓝色的方形点为1类的原始点,经过原点的那条线就是投影的直线,从图上可以清楚的看到,红色的点和蓝色的点被原点明显的分开了,这个数据只是随便画的,如果在高维的情况下,看起来会更好一点。下面我来推导一下二分类LDA问题的公式:LDA假设用来区分二分类的直线(投影函数)为:LDA分类的一个目标是使得不同类别之间的距离越远越好,同一类别之中的距离越近越好,所以我们需要定义几个关键的值:LDA类别i的原始中心点(均值)为:(Di表示属于类别i的点):类别i投影后的中心点为:衡量类别i投影后,类别

5、点之间的分散程度(方差)为:最终我们可以得到一个下面的公式,表示LDA投影到w后的目标优化函数:LDA我们分类的目标是,使得类别内的点距离越近越好(集中),类别间的点越远越好。LDA分母表示每一个类别内的方差之和,方差越大表示一个类别内的点越分散,分子为两个类别各自的中心点的距离的平方,我们最大化J(w)就可以求出最优的wLDA我们定义一个投影前的各类别分散程度的矩阵,这个矩阵看起来有一点麻烦,其实意思是,如果某一个分类的输入点集Di里面的点距离这个分类的中心店mi越近,则Si里面元素的值就越小,如果分类的点都紧紧地围绕着mi,则Si里面的元素值越更接近0.带入Si,将J(w)分母化为:LDA

6、同样的将J(w)分子化为:这样目标优化函数可以化成下面的形式:推导过程忽略了,最后推导结果如下:LDA对于N(N>2)分类的问题,就可以直接写出以下的结论:这同样是一个求特征值的问题,求出的第i大的特征向量,即为对应的Wi。LDA在人脸识别中的应用主要应用方法K-L变换奇异值分解基于主成分分析Fisher线性判别方法主要应用方法K-L变换为了得到彩色人脸图像的主分量特征灰度图像,可以采用Ohta[3]等人提出的最优基来模拟K-L变换方法,从而得到新的包含了彩色图像的绝大多数特征信息的主分量特征图像.主要应用方法奇异值分解(singularvaluedecomposition,简称SVD)是一种

7、有效的代数特征提取方法.由于奇异值特征在描述图像时是稳定的,且具有转置不变性、旋转不变性、位移不变性、镜像变换不变性等重要性质,因此奇异值特征可以作为图像的一种有效的代数特征描述。主要应用方法基于主成分分析(principalcomponentanalysis,简称PCA)该方法将人脸图像按行(列)展开所形成的一个高维向量看作是一种随机向量,因此可以采用K-L变换获得其正交K-L基底.对应于其中较

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。