资源描述:
《Matlab-在电磁场中的应用-要点.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、Matlab在电磁场中的应用专业:电气信息与自动化班级:2012级自动化3班学号:学院:物电学院指导老师:李虹完成日期:2013年12月15日Matlab在电磁场中的应用摘要Matlab是美国Mathworks公司于80年代推出的大型数学软件,通过多年的升级换代,现在已发展成为集数值计算、符号计算、可视化功能以及诸多的工具箱为一体的大型科学计算软件,它已广泛应用于科研院所、工程技术等各个部门,并成为大学生、研究生必备的工具软件。电磁学是物理学的一个分支,是研究电场和电磁的相互作用现象。电磁学从原来互相独立的两门科学(电学、磁学)发展成为物理学中一个完整的分支学科,主
2、要是基于电流的磁效应和变化的磁场的电效应的发现。这两个实验现象,加上麦克斯韦关于变化电场产生磁场的假设,奠定了电磁学的整个理论体系,发展了对现代文明起重大影响的电工和电子技术。针对电磁场学习理论性强、概念抽象等特点,利用Matlab强大的数值计算和图形技术,通过具体实例进行仿真,绘制相应的图形,使其形象化,便于对其的理解和掌握。将Matlab引入电磁学中,利用其可视化功能对电磁学实验现象进行计算机模拟,可以提高学习效率于学习积极性,使学习效果明显。本文通过Matlab软件工具,对点电荷电场、线电荷产生的电位、平面上N个电荷之间的库仑引力、仿真电荷在变化磁场中的运动等
3、问题分别给出了直观形象的的仿真图,形实现了可视化学习,丰富了学习内容,提高了对电磁场理论知识的兴趣。关键词:Matlab电磁学仿真计算机模拟一、点电荷电场问题描述:真空中,两个带正电的点电荷,在电量相同和电量不同情况下的电场分布。根据电学知识,若电荷在空间激发的电势分布为V,则电场强度等于电势梯度的负值,即:根据题意,真空中若以无穷远为电势零点,则在两个点电荷的电场中,空间的电势分布为:程序实现:clearallep0=8.85*1e-12;c0=1/(4*pi*ep0);e=1.60e-10;h=0.018;x=-0.5:h:0.5;y=-0.5:h:0.5;[X
4、,Y]=meshgrid(x,y);q=[e;1.9*e];fori=1:2V=c0*e./sqrt((X+0.2).^2+Y.^2)+c0.*q(i)./sqrt((X-0.2).^2+Y.^2);[Ex,Ey]=gradient(-V,h);figure(i)contour(X(:,:,1),Y(:,:,1),V,...[20,-20,19,-19,18,-18,17,-17,...16,-16,15,-15,14,-14,13,-13,...12,-12,11,-11,10,-10]);axis([-0.38,0.38,-0.28,0.28])holdonph
5、i=0:pi/17:2*pi;sx1=0.2+0.01*cos(phi);sy1=0.01*sin(phi);streamline(X(:,:,1),Y(:,:,1),Ex,Ey,sx1,sy1);holdonsx2=-0.2+0.01*cos(phi);sy2=0.01*sin(phi);streamline(X(:,:,1),Y(:,:,1),Ex,Ey,sx2,sy2);title(str{i})text(-0.212,0,'+','fontsize',20);text(0.187,0,'+','fontsize',20);end图1-1两个同号等量电荷的电场
6、分布图1-2两个同号不等量电荷的电场分布二、线电荷产生的电位设电荷均匀分布在从z=-L到z=L,通过原点的线段上,其密度为q(单位C/m),求在xy平面上的电位分布。点电荷产生的电位可表示为是一个标量。其中r为电荷到测量点的距离。线电荷所产生的电位可用积分或叠加的方法来求。为此把线电荷分为N段,每段长为dL。每段上电荷为q*dL,看作集中在中点的点电荷,它产生的电位为然后对全部电荷求和即可。把xy平面分成网格,因为xy平面上的电位仅取决于离原点的垂直距离R,所以可以省略一维,只取R为自变量。把R从0到10米分成Nr+1点,对每一点计算其电位。matlab程序clea
7、rall;L=input(‘线电荷长度L=:’);N=input(‘分段数N=:’);Nr=input(‘分段数Nr=:’);q=input(‘电荷密度q=:’);E0=8.85e-12;C0=1/4/pi/E0;L0=linspace(-L,L,N+1);L1=L0(1:N);L2=L0(2:N+1);Lm=(L1+L2)/2;dL=2*L/N;R=linspace(0,10,Nr+1);fork=1:Nr+1Rk=sqrt(Lm.^2+R(k)^2);Vk=C0*dL*q./Rk;V(k)=sum(Vk);end[max(V),min(V)]plot(R,V