资源描述:
《高考函数部分经典大题解析.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、1.(2009江苏卷)(本小题满分16分)设为实数,函数.(1)若,求的取值范围;(2)求的最小值;(3)设函数,直接写出(不需给出演算步骤)不等式的解集.解本小题主要考查函数的概念、性质、图象及解一元二次不等式等基础知识,考查灵活运用数形结合、分类讨论的思想方法进行探索、分析与解决问题的综合能力。满分16分(1)若,则(2)当时,当时,综上(3)时,得,当时,;当时,△>0,得:讨论得:当时,解集为;当时,解集为;当时,解集为.2.(2007广东)已知a是实数,函数,如果函数在区间上有零点,求a的取值范围.解析若,,显然在上没有零点,所以.令,解得①当时,恰有一个零点在上
2、;②当,即时,在上也恰有一个零点.③当在上有两个零点时,则或解得或综上所求实数的取值范围是或3.(2007年安徽省六校)已知函数,在R上有定义,对任意的有且(1)求证:为奇函数(2)若,求的值解(1)对,令x=u-v则有f(-x)=f(v-u)=f(v)g(u)-g(v)f(u)=f(u-v)=-[f(u)g(v)-g(u)f(v)]=-f(x)………………4分(2)f(2)=f{1-(-1)}=f(1)g(-1)-g(1)f(-1)=f(1)g(-1)+g(1)f(1)=f(1){g(-1)+g(1)}∵f(2)=f(1)≠0∴g(-1)+g(1)=14.(07上海)已知
3、函数(1)判断函数的奇偶性;(2)若在区间是增函数,求实数的取值范围。解析(1)当时,为偶函数;当时,既不是奇函数也不是偶函数.(2)设,,由得,要使在区间是增函数只需,即恒成立,则。另解(导数法):,要使在区间是增函数,只需当时,恒成立,即,则恒成立,故当时,在区间是增函数。已知定义域为R的函数是奇函数.(1)求a,b的值;(2)若对任意的,不等式恒成立,求k的取值范围.解(1)因为是R上的奇函数,所以从而有又由,解得(2)解法一:由(1)知由上式易知在R上为减函数,又因是奇函数,从而不等式等价于因是R上的减函数,由上式推得即对一切从而解法二:由(1)知又由题设条件得即整
4、理得,因底数2>1,故上式对一切均成立,从而判别式5.(2009广东三校一模)设函数.(1)求的单调区间;(2)若当时,(其中)不等式恒成立,求实数的取值范围;(3)试讨论关于的方程:在区间上的根的个数.解(1)函数的定义域为.1分由得;2分由得,3分则增区间为,减区间为.4分(2)令得,由(1)知在上递减,在上递增,6分由,且,8分时,的最大值为,故时,不等式恒成立.9分(3)方程即.记,则.由得;由得.所以g(x)在[0,1]上递减,在[1,2]上递增.而g(0)=1,g(1)=2-2ln2,g(2)=3-2ln3,∴g(0)>g(2)>g(1)10分所以,当a>1时,
5、方程无解;当3-2ln3<a≤1时,方程有一个解,当2-2ln2<a≤a≤3-2ln3时,方程有两个解;当a=2-2ln2时,方程有一个解;当a<2-2ln2时,方程无解.13分字上所述,a时,方程无解;或a=2-2ln2时,方程有唯一解;时,方程有两个不等的解.14分6.(陕西长安二中2008届高三第一学期第二次月考)定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a、b∈R,有f(a+b)=f(a)f(b),(1)求证:f(0)=1;(2)求证:对任意的x∈R,恒有f(x)>0;(3)证明:f(x)是R上的增函数;(4)若f(x)·f(2
6、x-x2)>1,求x的取值范围。解(1)令a=b=0,则f(0)=[f(0)]2∵f(0)≠0∴f(0)=1(2)令a=x,b=-x则f(0)=f(x)f(-x)∴由已知x>0时,f(x)>1>0,当x<0时,-x>0,f(-x)>0∴又x=0时,f(0)=1>0∴对任意x∈R,f(x)>0(3)任取x2>x1,则f(x2)>0,f(x1)>0,x2-x1>0∴∴f(x2)>f(x1)∴f(x)在R上是增函数(4)f(x)·f(2x-x2)=f[x+(2x-x2)]=f(-x2+3x)又1=f(0),f(x)在R上递增∴由f(3x-x2)>f(0)得:3x-x2>0∴07、<37.(2009上海卷文)(本题满分16分)本题共有2个小题,第1小题满分6分,第2小题满分10分.有时可用函数描述学习某学科知识的掌握程度.其中表示某学科知识的学习次数(),表示对该学科知识的掌握程度,正实数a与学科知识有关.(1)证明:当x7时,掌握程度的增长量f(x+1)-f(x)总是下降;(2)根据经验,学科甲、乙、丙对应的a的取值区间分别为(115,121],(121,127],(127,133].当学习某学科知识6次时,掌握程度是85%,请确定相应的学科.证明(1)当时,而当时,函数单调递增,且故函数