北师大版初二上-证明讲义.pdf

北师大版初二上-证明讲义.pdf

ID:57145483

大小:1.31 MB

页数:15页

时间:2020-08-03

北师大版初二上-证明讲义.pdf_第1页
北师大版初二上-证明讲义.pdf_第2页
北师大版初二上-证明讲义.pdf_第3页
北师大版初二上-证明讲义.pdf_第4页
北师大版初二上-证明讲义.pdf_第5页
资源描述:

《北师大版初二上-证明讲义.pdf》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、第七章:证明(一)◆7.1为什么要证明1.推理证明的必要性给出两条线段a,b,判断它们是否相等,我们就需要去测量,因为有误差,所以测量的结果可能相等,也可能不相等,这说明测量所得出的结论也不一定正确.实验、观察、操作是人们认识事物的重要手段,但仅凭实验、观察、操作得到的结论有时是不全面的,甚至是错误的,所以正确地认识事物,不能单凭直觉,必须一步一步、有根有据地进行推理.谈重点证明的必要性(1)直觉有时会产生错误,不是永远可信的;(2)图形的性质并不都是通过测量得出的;(3)对少数具体例子的观察、测量或计算得出的结论,并不能保证一般情况下都成

2、立;(4)只有通过推理的方法研究问题,才能揭示问题的本质.【例1】观察下图,左图中间的圆圈大还是右图中间的圆圈大?2.检验数学结论常用的方法(1)检验数学结论常用的方法主要有:实验验证、举出反例、推理证明.实验验证是最基本的方法,它直接反映由具体到抽象、由特殊到一般的逻辑思维方法;举出反例常用于说明该数学结论不一定成立;推理证明是最可靠、最科学的方法,是我们要掌握的重点.实际上每一个正确的结论都需要我们进行严格的推理证明才能得出.检验数学结论的具体过程:观察、度量、实验→猜想归纳→结论→推理正确结论.(2)应用检验数学结论常用的三种方法的应

3、用:实验验证法常用于检验一些比较直观、简单的结论;举出反例法多用于验证某结论是不正确的;推理证明主要用来进行严格的推理论证,既可以验证某结论是正确的,也可以验证某结论是不正确的.【例2-1】我们知道:2×2=4,2+2=4.试问:对于任意数a与b,是否一定有结论a×b=a+b?【例2-2】如图,在YABCD中,DF⊥AC于点F,BE⊥AC于点E,试问DF与BE的位置关系和数量关系如何?你能肯定吗?请说明理由.3.推理的应用推理的应用在数学中很多,下面给出两种较常见的应用:(1)规律探究给出形式上相同的一些代数式或几何图形,观察、猜想其中蕴含

4、的规律,并验证或推理说明.这是规律归纳类题目的特点.解题思路:解决此类题目时,要用从特殊到一般的思想找到思路,而且必须善于猜想.代数规律题一般用式子表示其规律,对于几何规律题有时用式子表示,有时写出文字结论.(2)推理在日常生活中的应用生活中我们经常需要对有关结论的真伪作出判断,如购买货物、称重是否准确、获得的某种信息是否可靠等.我们可以根据自己的知识储备或借助外力,进行适当的推理,辨别真伪,从而作出判断.【例3-1】下列图案均由边长为单位长度的小正方形按一定的规律拼接而成.依此规律,第5个图案中小正方形的个数为__________.【例3

5、-2】有红、黄、蓝三个箱子,一个苹果放入其中某个箱子内,并且:①红箱子盖上写着:“苹果在这个箱子里.”②黄箱子盖上写着:“苹果不在这个箱子里.”③蓝箱子盖上写着:“苹果不在红箱子里.”已知①②③中只有一句是真的,那么苹果在哪个箱子里?………………………………………………………………………………◆7.2定义与命题1.定义对某些名称或术语的含义加以描述,作出明确的规定,就是对名称和术语下定义.谈重点下定义的注意事项①在定义中,必须揭示出事物与其他事物的本质属性的区别.②定义的双重性:定义本身既可以当性质用,又可以当判定用.③语句必须通顺、严格、

6、准确,一般不能用“大约”“大概”“差不多”“左右”等含糊不清的词语.要有利于人们对被定义的事物或名词与其他事物或名词区别.【例1】下列语句,属于定义的是().A.两点之间线段最短B.连接三角形两边中点的线段叫做三角形的中位线C.三角形的中位线平行于第三边并且等于第三边的一半D.三人行则必有我师焉2.命题(1)定义:判断一件事情的句子,叫做命题.(2)命题的组成结构:①每个命题都是由条件和结论两部分组成.条件是已知事项,结论是由已知事项推断出的事项.命题一般写成“如果……那么……”的形式.“如果”引出的部分是条件,“那么”引出的部分是结论.②

7、有些命题没有写成“如果……那么……”的形式,条件和结论不明显.对于这样的命题,要经过分析才能找到条件和结论,也可以将它们改写成“如果……那么……”的形式.命题的条件部分,有时也可用“已知……”或“若……”等形式表述.命题的结论部分,有时也可用“求证……”或“则……”等形式表述.谈重点改写命题命题的改写不能是简单地加上“如果”“那么”,而应当使改写的命题和原来的命题内容不变,且语句通顺完整,命题的条件、结论要清楚可见.有些命题条件和结论不一定只有一个,要注意区分.【例2】指出下列命题的条件和结论:①平行于同一直线的两条直线互相平行;②若ab=

8、1,则a与b互为倒数;③同角的余角相等;④矩形的四个角都是直角.分析:命题的条件是已知事项,结论是由已知事项推断出的事项.命题一般写成“如果……,那么……”的形式.“如果”引出的

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。