欢迎来到天天文库
浏览记录
ID:5711835
大小:412.50 KB
页数:12页
时间:2017-12-23
《广东省中山中学11-12学年高一上学期第一次段考题数学》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、中山一中2011—2012学年度上学期第一次段考高一数学试卷满分100分,时间120分钟一、选择题(本大题共8小题,每小题4分,共32分。在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母填在答案卷指定的位置上。)1.设集合,,则(A)(B)(C)(D)2.下列各图中,不可能表示函数的图象的是(A)(B)(C)(D)3.下列函数在(,)内为减函数的是(A)(B)(C)(D)4.下列各组函数中和相同的是Ks5uA.B.C、D.5.化简的结果为A.a16B.a8C.a4D.a26.已知函数,则的值为
2、(A)(B)(C)(D)7.设是定义在R上的奇函数,当时,,那么的值是(A)(B)(C)(D)8.已知,则的大小关系是A. B.C.D.二、填空题:本大题共6小题,每小题4分,共24分。答案填在答案卷指定的位置上。9.函数的定义域是。(用集合表示)10.函数在区间[3,6]上的最大值是________;最小值是__________;11.已知,则12.已知是偶函数,定义域为,则13.已知是定义在上的增函数,且,则的取值范围为。14.对任意两个集合,定义,,记,,则____________.三、解答题:本大题共6小
3、题,共44分。15.(本题满分6分)已知全集,,,求的值。16.(本题满分6分)求值:(1)(2)17.(本题满分8分)若且,解关于的不等式.18.(本题满分8分)已知偶函数在上是增函数,试问在上是增函数还是减函数?请证明你的结论。19.(本题满分8分)在经济学中,函数的边际函数定义为。某公司每月最多生产台报警系统装置,生产台的收入函数为(单位:元),其成本函数为(单位:元),利润是收入与成本之差。⑴求利润函数及边际利润函数;⑵利润函数与边际利润函数是否具有相等的最大值?⑶你认为本题中边际利润函数取最大值的实际意义
4、是什么?Ks5uKs5u20.(本题满分8分)已知二次函数(是常数,且)满足条件:,且方程有两个相等实根.(1)求的解析式;(2)是否存在实数,使的定义域和值域分别为和?若存在,求出的值;若不存在,说明理由.班级登分号姓名统考号密封线内不要答题中山一中2011-2012学年度上学期第一次段考高一数学答题卷一、选择题(每小题4分,共32分)题号12345678得分答案二、填空题(每小题4分,共24分)9.___________________10.________,_________11.______________
5、_____12.____________________13._______________14.___________________三、解答题:本大题共6小题,共44分。15.(本题满分6分)16、(本题满分6分)17.(本题满分8分)18.(本题满分8分)Ks5u19.(本题满分8分)密封线内不要答题20.(本题满分8分)Ks5u中山一中2011—2012学年度上学期第一次段考高一数学试卷答案一、选择题(每小题4分,共32分)题号12345678得分答案CBDDCDCB二、填空题(每小题4分,共24分)9._
6、___10.___,_______11.______________12.______________13.___14._____三、解答题:本大题共6小题,共44分。15.(本题满分6分)已知全集,,,求的值。Ks5u解:…………………………………3分……………………………6分16.(本题满分6分)求值:(1)(2)解(1)原式…………………3分(2)原式.……………6分17.(本题满分8分)若且,解关于的不等式.解:当时,原不等式等价于…………4分当时,原不等式等价于……………………7分因此,当时,不等式的解集
7、为;当时,不等式的解集为…………………8分18.(本题满分8分)已知偶函数在上是增函数,试问在上是增函数还是减函数?请证明你的结论。解:在上是减函数。证明:设,则…………………2分因在上是增函数,所以…………4分又是偶函数,所以………………………6分因此,在上是减函数。…………………………8分19.(8分)解(1)由题意知:利润函数,……………1分其定义域为,且;……………2分边际利润函数,……………3分其定义域为,且.……………4分(2),∴当或时,的最大值为元.……………6分∵是减函数,∴当时,的最大值为元.∴
8、利润函数与边际利润函数不具有相同的最大值.……7分(3)边际利润函数当时有最大值,说明生产第二台机器与生产第一台的利润差最大,边际利润函数是减函数,说明随着产量的增加,每一台利润与前一台利润相比在减少。…………8分20.(8分)解:(1)方程 f(x)=x,即ax2+bx=x,亦即ax2+(b-1)x=0,由方程有两个相等实根,得Δ=(b-1)2-4a×0=
此文档下载收益归作者所有