二次函数图象和性质总结课件.ppt

二次函数图象和性质总结课件.ppt

ID:57044930

大小:682.00 KB

页数:30页

时间:2020-07-28

二次函数图象和性质总结课件.ppt_第1页
二次函数图象和性质总结课件.ppt_第2页
二次函数图象和性质总结课件.ppt_第3页
二次函数图象和性质总结课件.ppt_第4页
二次函数图象和性质总结课件.ppt_第5页
资源描述:

《二次函数图象和性质总结课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、22.1.2二次函数图象和性质知识回顾1、二次函数的一般形式是怎样的?y=ax²+bx+c(a,b,c是常数,a≠0)2.下列函数中,哪些是二次函数?①⑤④③②x…-3-2-10123…y解:(1)列表…9410149…(2)描点(3)连线12345x12345678910yo-1-2-3-4-5y=x2画最简单的二次函数y=x2的图象你还记得描点法的一般步骤?列表时应注意什么问题?描点法列表描点连线描点时应以哪些数值作为点的坐标?连线时应注意什么问题?二次函数y=x2的图象是一条曲线,它的形状类似于投篮球时球在空中所经过的路线,只是这条曲线开口

2、向上,这条曲线叫做抛物线y=x2,二次函数y=x2的图象是轴对称图形,一般地,二次函数y=ax2+bx+c(a≠0)的图象叫做抛物线y=ax2+bx+c12345x12345678910yo-1-2-3-4-5抛物线与它的对称轴的交点(0,0)叫做抛物线的顶点它是抛物线的最低点.实际上,二次函数的图象都是抛物线,对称轴是y轴这条抛物线是轴对称图形吗?如果是,对称轴是什么?抛物线与对称轴有交点吗?例题与练习x…-4-3-2-101234…y=x2例1.在同一直角坐标系中画出函数y=x2和y=2x2的图象解:(1)列表(2)描点(3)连线12345x

3、12345678910yo-1-2-3-4-5128…20.500.524.58…4.512xy=2x28…………-2-1.5-1-0.500.511.524.520.500.524.5812345x12345678910yo-1-2-3-4-5函数y=x2,y=2x2的图象与函数y=x2(图中虚线图形)的图象相比,有什么共同点和不同点?12观察共同点:不同点:开口都向上;顶点是原点而且是抛物线的最低点,对称轴是y轴开口大小不同;

4、a

5、越大,在对称轴的左侧,y随着x的增大而减小。在对称轴的右侧,y随着x的增大而增大。抛物线的开口越小。探究画出函数

6、的图象.x1y解:(1)列表(2)描点(3)连线x…-2-1.5-1-0.500.511.52…y=-x2y=- x2y=-2x212………………-4-2.25-1-0.25000-0.25-1-2.25-4-2-2-8-8-2-2-0.5-0.5-0.5-0.5-1.125-1.125-0.125-0.125-4.5-4.5-1-2-30123-1-2-3-4-5x1y-1-2-30123-1-2-3-4-5观察函数y=-x2,y=-2x2的图象与函数y=-x2(图中蓝线图形)的图象相比,有什么共同点和不同点?12共同点:开口都向下;不同点:顶

7、点是原点而且是抛物线的最高点,对称轴是y轴开口大小不同;

8、a

9、越大,在对称轴的左侧,y随着x的增大而增大。在对称轴的右侧,y随着x的增大而减小。抛物线的开口越小.对比抛物线,y=x2和y=-x2.它们关于x轴对称吗?一般地,抛物线y=ax2和y=-ax2呢?在同一坐标系内,抛物线与抛物线是关于x轴对称的.1、根据左边已画好的函数图象填空:(1)抛物线y=2x2的顶点坐标是,对称轴是,在侧,y随着x的增大而增大;在侧,y随着x的增大而减小,当x=时,函数y的值最小,最小值是,抛物线y=2x2在x轴的方(除顶点外)。(2)抛物线在x轴的方(除顶点外)

10、,在对称轴的左侧,y随着x的;在对称轴的右侧,y随着x的,当x=0时,函数y的值最大,最大值是,当x0时,y<0.(0,0)y轴对称轴的右对称轴的左00上下增大而增大增大而减小0课堂练习y=ax2(a≠0)a>0a<0图象开口方向顶点坐标对称轴增减性极值xyOyxO向上向下(0,0)(0,0)y轴y轴当x<0时(y轴左侧),y随着x的增大而减小。当x<0时(y轴左侧),y随着x的增大而增大。x=0时,y最小=0x=0时,y最大=0抛物线y=ax2(a≠0)的形状是由

11、a

12、来确定的,一般说来,

13、a

14、越大,归纳小结当x>0时(y轴左侧),y随着x的增

15、大而增大。当x>0时,y随着x的增大而减小。抛物线的开口就越小.

16、a

17、越小,抛物线的开口就越大.1、二次函数y=ax2的图象是什么?2、二次函数y=ax2的图象有何性质?3、抛物线y=ax2与y=-ax2有何关系?小结归纳二次函数的图象及性质:1.图象是一条抛物线,对称轴是y轴,顶点是原点。归纳二次函数的图象及性质:2.当a>0时,开口向上,顶点是最低点,a值越大,抛物线开口越小;在对称轴的左侧,y随x的增大而减小,在对称轴的右侧,y随x的增大而增大。归纳二次函数的图象及性质:3.当a<0时,开口向下,顶点是最高点,a值越大,抛物线开口越大;在对

18、称轴的左侧,y随x的增大而增大;在对称轴的右侧,y随x的增大而减小。1、说出下列函数图象的性质:2、已知二次函数的图形经过点(-2,-3

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。