欢迎来到天天文库
浏览记录
ID:57040341
大小:830.50 KB
页数:17页
时间:2020-07-27
《高中数学选修导数的几何意义课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、1.1.3导数的几何意义先来复习导数的概念定义:设函数y=f(x)在点x0处及其附近有定义,当自变量x在点x0处有改变量Δx时函数有相应的改变量Δy=f(x0+Δx)-f(x0).如果当Δx0时,Δy/Δx的极限存在,这个极限就叫做函数f(x)在点x0处的导数(或变化率)记作即:下面来看导数的几何意义:βy=f(x)PQMΔxΔyOxyβPy=f(x)QMΔxΔyOxy如图,曲线C是函数y=f(x)的图象,P(x0,y0)是曲线C上的任意一点,Q(x0+Δx,y0+Δy)为P邻近一点,PQ为C的割线,PM//
2、x轴,QM//y轴,β为PQ的倾斜角.斜率!PQoxyy=f(x)割线切线T请看当点Q沿着曲线逐渐向点P接近时,割线PQ绕着点P逐渐转动的情况.我们发现,当点Q沿着曲线无限接近点P即Δx→0时,割线PQ有一个极限位置PT.则我们把直线PT称为曲线在点P处的切线.设切线的倾斜角为α,那么当Δx→0时,割线PQ的斜率,称为曲线在点P处的切线的斜率.即:这个概念:①提供了求曲线上某点切线的斜率的一种方法;②切线斜率的本质——函数在x=x0处的导数.初中平面几何中圆的切线的定义:直线和圆有唯一公共点时,叫做直线和圆相切
3、。这时直线叫做圆的切线,唯一的公共点叫做切点。割线趋近于确定的位置的直线定义为切线.曲线与直线相切,并不一定只有一个公共点。例1:求曲线y=f(x)=x2+1在点P(1,2)处的切线方程.QPy=x2+1xy-111OjMDyDx因此,切线方程为y-2=2(x-1),即y=2x.求曲线在某点处的切线方程的基本步骤:先利用切线斜率的定义求出切线的斜率,然后利用点斜式求切线方程.练习:如图已知曲线,求:(1)点P处的切线的斜率;(2)点P处的切线方程.yx-2-112-2-11234OP即点P处的切线的斜率等于4.
4、(2)在点P处的切线方程是y-8/3=4(x-2),即12x-3y-16=0.(1)求出函数在点x0处的变化率,得到曲线在点(x0,f(x0))的切线的斜率。(2)根据直线方程的点斜式写出切线方程,即归纳:求切线方程的步骤无限逼近的极限思想是建立导数概念、用导数定义求函数的导数的基本思想,丢掉极限思想就无法理解导数概念。作业:2.
此文档下载收益归作者所有