随机变量及其分布课件.ppt

随机变量及其分布课件.ppt

ID:57029543

大小:1.40 MB

页数:83页

时间:2020-07-26

随机变量及其分布课件.ppt_第1页
随机变量及其分布课件.ppt_第2页
随机变量及其分布课件.ppt_第3页
随机变量及其分布课件.ppt_第4页
随机变量及其分布课件.ppt_第5页
资源描述:

《随机变量及其分布课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第二章随机变量离散型随机变量及其分布律随机变量的分布函数连续型随机变量及其概率密度函数二维随机变量及其分布随机变量函数的分布在第一章中,介绍了随机事件及其概率,仅限于研究单个的随机事件,为了深入全面掌握随机现象的统计规律,我们将随机试验的结果与实数对应起来,即将随机试验的结果数量化,为此引入随机变量的概念。2.1离散型随机变量及其分布律2.1.1定义.设S={e}是试验的样本空间,如果量X是定义在S上的一个单值实值函数即对于每一个eS,有一实数X=X(e)与之对应,则称X为随机变量。随机变量常用X、Y、Z或、、

2、等表示。随机变量的特点:1X的全部可能取值是互斥且完备的2X的部分可能取值描述随机事件随机变量的分类:随机变量2.1.2随机变量的分类与分布2.1.3离散型随机变量的概率分布定义2.1设离散型随机变量X取值x1,x2,…,xn,…且取这些值的概率依次为p1,p2,…,pn,…,称P{X=xk}=pk,(k=1,2,…)为X的分布律或概率分布。Xx1x2…xK…Pkp1p2…pk…如果随机变量X仅取有限个或可列个值,则称X为离散型随机变量。(1)非负性:pk0,k=1,2,…;(2)规范性:例1设袋中有5只球,其中有2

3、只白3只黑。现从中任取3只球(不放回),求抽得的白球数X为k的概率。解k可取值0,1,2分布律的性质例2.某射手对目标独立射击5次,每次命中目标的概率为p,以X表示命中目标的次数,求X的分布律。解:设Ai第i次射击时命中目标,i=1,2,3,4,5则A1,A2,…A5,相互独立且P(Ai)=p,i=1,2,…5.SX={0,1,2,3,4,5},(1-p)51.(0-1)分布(两点分布)如果随机变量X的分布律为P{X=k}=pk(1-p)1-k,(k=0,1)其中,0

4、(两点分布),记作X~B(1,p).0-1分布的分布律也可写成下表形式2.1.4几种常见的离散型分布2.二项分布在n重贝努利试验中,设P(A)=p,P()=1-p,以X记在n次试验中事件A发生的次数,则X的所有可能取值为0,1,2,3,…,n,且称X服从参数为n,p(0

5、3.(1)设X为汽车行驶途中遇到的红灯数,求X的分布律.(2)求汽车行驶途中至少遇到5次红灯的概率.解:(1)由题意,X~B(6,1/3),于是,X的分布律为:例4.某人射击的命中率为0.02,他独立射击400次,试求其命中次数不少于2的概率。泊松定理设随机变量Xn~B(n,p),(n=0,1,2,…),且n很大,p很小,记=np,则解设X表示400次独立射击中命中的次数,则X~B(400,0.02),故P{X2}=1-P{X=0}-P{X=1}=1-0.98400-(400)(0.02)(0.98399)=…上题

6、用泊松定理取=np=(400)(0.02)=8,故近似地有P{X2}=1-P{X=0}-P{X=1}=1-(1+8)e-8=0.996981.泊松(Poisson)分布如果随机变量X的分布率为P{X=k}=,k=0,1,2,…(0)则称X服从参数为的泊松分布,记X~泊松定理表明,泊松分布是二项分布的极限分布,当n很大,p很小时,二项分布就可近似地看成是参数=np的泊松分布例5.设某国每对夫妇的子女数X服从参数为的泊松分布,且知一对夫妇有不超过1个孩子的概率为3e-2.求任选一对夫妇,至少有3个孩子的概率。解

7、:由题意,2.2随机变量的分布函数一、分布函数的概念.定义2.2设X是随机变量,对任意实数x,事件{Xx}的概率P{Xx}称为随机变量X的分布函数。记为F(x),即F(x)=P{Xx}.易知,对任意实数a,b(a

8、必要性质。例2.6设X的分布律如右表试求出X的分布函数。X345P0.10.30.6由已知随机变量X的分布函数F(x),可算得X落在任意区间(a,b]内的概率P{a

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。