欢迎来到天天文库
浏览记录
ID:56966629
大小:1.35 MB
页数:98页
时间:2020-07-22
《运筹学ppt Ch1线性规划课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、运筹学OperationsResearchChapter1线性规划LinearProgramming1.1LP的数学模型MathematicalModelofLP1.2图解法GraphicalMethod1.3标准型StandardformofLP1.4基本概念BasicConcepts1.5单纯形法SimplexMethod7/30/20211.1数学模型MathematicalModel7/30/20211.1线性规划的数学模型MathematicalModelofLP线性规划通常研究资源的最优利用、设备最佳运行等问题。例如,当任务或目标确定后,如何统
2、筹兼顾,合理安排,用最少的资源(如资金、设备、原标材料、人工、时间等)去完成确定的任务或目标;企业在一定的资源条件限制下,如何组织安排生产获得最好的经济效益(如产品量最多、利润最大)。线性规划(LinearProgramming,缩写为LP)是运筹学的重要分支之一,在实际中应用得较广泛,其方法也较成熟,借助计算机,使得计算更方便,应用领域更广泛和深入。7/30/2021【例1.1】最优生产计划问题。某企业在计划期内计划生产甲、乙、丙三种产品。这些产品分别需要要在设备A、B上加工,需要消耗材料C、D,按工艺资料规定,单件产品在不同设备上加工及所需要的资源如表
3、1.1所示。已知在计划期内设备的加工能力各为200台时,可供材料分别为360、300公斤;每生产一件甲、乙、丙三种产品,企业可获得利润分别为40、30、50元,假定市场需求无限制。企业决策者应如何安排生产计划,使企业在计划期内总的利润收入最大?1.1线性规划的数学模型MathematicalModelofLP1.1.1应用模型举例7/30/2021产品资源甲乙丙现有资源设备A312200设备B224200材料C451360材料D235300利润(元/件)403050表1.1产品资源消耗1.1线性规划的数学模型MathematicalModelofLP7/3
4、0/2021【解】设x1、x2、x3分别为甲、乙、丙三种产品的产量数学模型为:1.1线性规划的数学模型MathematicalModelofLP产品资源甲乙丙现有资源设备A312200设备B224200材料C451360材料D235300利润(元/件)403050最优解X=(50,30,10);Z=34007/30/2021线性规划的数学模型由决策变量Decisionvariables目标函数Objectivefunction及约束条件Constraints构成。称为三个要素。其特征是:1.解决问题的目标函数是多个决策变量的线性函数,通常是求最大值或最小值
5、;2.解决问题的约束条件是一组多个决策变量的线性不等式或等式。怎样辨别一个模型是线性规划模型?1.1线性规划的数学模型MathematicalModelofLP7/30/2021【例1.2】某商场决定:营业员每周连续工作5天后连续休息2天,轮流休息。根据统计,商场每天需要的营业员如表1.2所示。表1.2营业员需要量统计表商场人力资源部应如何安排每天的上班人数,使商场总的营业员最少。星期需要人数星期需要人数一300五480二300六600三350日550四4001.1线性规划的数学模型MathematicalModelofLP7/30/2021【解】设xj(
6、j=1,2,…,7)为休息2天后星期一到星期日开始上班的营业员,则这个问题的线性规划模型为1.1线性规划的数学模型MathematicalModelofLP星期需要人数星期需要人数一300五480二300六600三350日550四4007/30/20211X10C1404>=3001042X267C2301>=30013X3146C3350>=35004X4170C4400>=40005X597C5480>=48006X6120C6600>=60007X717C7550>=5500最优解:Z=617(人)7/30/2021【例1.3】合理用料问题。某汽车需
7、要用甲、乙、丙三种规格的轴各一根,这些轴的规格分别是1.5,1,0.7(m),这些轴需要用同一种圆钢来做,圆钢长度为4m。现在要制造1000辆汽车,最少要用多少圆钢来生产这些轴?表1.3下料方案方案规格12345678910需求量y1(根)22111000001000y210210432101000y301023012451000余料(m)00.30.50.1o.400.30.60.20.51.1线性规划的数学模型MathematicalModelofLP7/30/2021[解]设xj(j=1,2…,10)为第j种下料方案所用圆钢的根数。则用料最少数学模型
8、为:1.1线性规划的数学模型MathematicalModelof
此文档下载收益归作者所有