欢迎来到天天文库
浏览记录
ID:56926198
大小:82.82 KB
页数:12页
时间:2020-07-24
《统计学简答题问题详解.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、统计学基础(贾俊平)课后简答题第一章1.什么是统计学?统计方法可以分为哪两大类?统计学是收集、处理、分析、解释数据并从数据中得出结论的科学。统计方法可以分为描述统计和分类统计。2、统计数据可分为哪几种类型?不同类型的数据各有什么特点?按照所采用的计量尺度不同,分为分类数据、顺序数据和数值型数据;按照统计数据的收集方法,分为观测的数据和实验的数据;按照被描述的对象与时间的关系,分为截面数据和时间序列数据。按计量尺度分时:分类数据中各类别之间是平等的并列关系,各类别之间的顺序是可以任意改变的;顺序数据的类别之间是可以比较顺序的;数值型数据其
2、结果表现为具体的数值。按收集方法分时:观测数据是在没有对事物进行人为控制的条件下等到的;实验数据的在实验中控制实验对象而收集到的数据。按被描述的对象与时间关系分时:截面数据所描述的是现象在某一时刻的变化情况;时间序列数据所描述的是现象随时间而变化的情况。3.举例说明总体、样本、参数、统计量、变量这几个概念。总体是包含所研究的全部个体(数据)的集合样本是从总体中抽取的一部分元素的集合参数是用来描述总体特征的概括性数字度量统计量是用来描述样本特征的概括性数字度量变量是说明现象某种特征的概念。对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从
3、中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。4.什么是有限总体和无限总体?举例说明。根据总体所包含的单位数目是否可数可以分为有限总体和无限总体。总体的围能够明确确定,而且元素的数目是有限可数的。比如,由若干个企业构成的总体就是有限总体,一批待检验的灯泡也是有限总体。无限总体是指总体所包括的元素是无限的,不可数的。例如,在科学试验中,每一个试验
4、数据可以看作是一个总体的一个元素,而试验可以无限地进行下去,因此由试验数据构成的总体就是一个无限总体。5.变量可分为哪几类?分类变量:说明事物类别的一个名称。顺序变量:说明事物有序类别的一个名称。数值型变量:说明事物数字特征的一个名称。离散型变量:只能取可数值的变量。连续型变量:可以在直线上或区间中去任何值的变量。6.举例说明离散型变量和连续型变量。离散型变量:只能取有限个值,取值以整数位断开。如企业数、产量数量连续型变量:取值连续不断,不能一一列举,如年龄、温度第三章1.数据的预处理包括哪些容?数据审核(完整性和准确性;适用性和实效性
5、),数据筛选,数据排序等。2.直方图与条形图有什么区别?条形图中每一矩形表示一个类别,其宽度没有意义,而直方图的宽度则表示各组的组距。其次,由于分组数据具有连续性,直方图的各矩形通常是连续排列的,而条形图是分开排列的。最后,条形图主要用于展示定性数据,而直方图则主要用于展示定量数据。3.饼图与环形图有什么不同?饼图是用圆形及圆扇形的面积来表示数值大小的图形,它主要用于表示总体中各组成部分所占的比例,对于研究结构性问题十分有用。环形图与饼图类似,但它们之间也有区别。饼图只能显示一个样本或总体各部分所占比例,环形图可以同时绘制多个样本或总体
6、的数据系列,其图形中间有个“空洞”,每个样本或总体的数据系类为一个环。因此环形图可显示多个总体或样本各部分所占的相应比例,从而有利于我们进行比较研究。4.茎叶图与直方图相比有什么优点?直方图看数据的分布很方便,但原始数据看不至到了茎叶图则不同,它不仅可以看出数据的分布,又能给出每一个原始数值,即保留了原始数据的信息。制作茎叶图不需要对数据进行分组,特别是当数据量较少时,用茎叶图更容易观察数据的分布。”5.使用图表应注意哪些问题?(1)显示数据。(2)让读者把注意力集中在图形的容上,而不是在制作图形的程序上(3)避免歪曲!(4)强调数据之
7、间的比较。(5)服务于一个明确的目的。(6)有对图形的统计描述和文字说明。第四章1.一组数据的分布特征可以从哪几个方面进行测度?数据分布的特征主要从三个方面进行测度和描述:一是分布的集中趋势,反映各数据向其中心值靠拢E或聚集的程度;二是分布的离散程度,反映各数据远离其中心值的趋势;三是分布的形状,反映数据分布偏斜程度和峰度。2.简述四分位数的计算方法。四分位数是一组数据排序后处于25%和75%位置上的值。根据未分组数据计算四分位数时,首先对数据进行排序,然后确定四分位数所在的位置,该位置上的数值就是四分位数。3.对于比率数据为什么采用几
8、何平均?答:比率数据往往表现出连乘积为总比率的特征,不同于一般数据的和为总量的性质,由此需采用几何平均。在实际应用中,对于比率数据的平均采用几何平均要比算数平均更合理。从公式中也可看出,G就是平均增长率。4
此文档下载收益归作者所有