2020年初升高数学衔接专题10 圆(原卷版).doc

2020年初升高数学衔接专题10 圆(原卷版).doc

ID:56891941

大小:1.02 MB

页数:14页

时间:2020-07-20

2020年初升高数学衔接专题10 圆(原卷版).doc_第1页
2020年初升高数学衔接专题10 圆(原卷版).doc_第2页
2020年初升高数学衔接专题10 圆(原卷版).doc_第3页
2020年初升高数学衔接专题10 圆(原卷版).doc_第4页
2020年初升高数学衔接专题10 圆(原卷版).doc_第5页
资源描述:

《2020年初升高数学衔接专题10 圆(原卷版).doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、初高中天衣无缝衔接教程(2020版)专题10圆本专题在初中、高中扮演的角色平面几何中直线与圆的位置关系包含的知识点较多,方法灵活,抓住核心概念和基本方法即可,对定理的本质要理解,看到相关已知能够联想到需要的定理,常常先分析所求问题的路径,找准方向,综合运用条件加以突破.直线与圆有三种位置关系:相离、相切和相交.相切和相交是代数与几何研究的重点.常用的结论包括:1.切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.2.弦切角定理:弦切角等于它所夹的弧所对的圆周角.3.相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等4.切割线定理:从圆外一点引圆的切

2、线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项5.割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等高中必备知识点1:直线与圆的位置关系设有直线和圆心为且半径为的圆,怎样判断直线和圆的位置关系?观察图3.3-1,不难发现直线与圆的位置关系为:当圆心到直线的距离时,直线和圆相离,如圆与直线;当圆心到直线的距离时,直线和圆相切,如圆与直线;当圆心到直线的距离时,直线和圆相交,如圆与直线.在直线与圆相交时,设两个交点分别为A、B.若直线经过圆心,则AB为直径;若直线不经过圆心,如图3.3-2,连结圆心和弦的中点的线段垂直于这条弦.且在中

3、,为圆的半径,为圆心到直线的距离,为弦长的一半,根据勾股定理,有.当直线与圆相切时,如图3.3-3,为圆的切线,可得,,且在中,.如图3.3-4,为圆的切线,为圆的割线,我们可以证得,因而.典型考题【典型例题】在同一平面直角坐标系中有5个点:A(1,1),B(﹣3,﹣1),C(﹣3,1),D(﹣2.﹣2).(1)画出△ABC的外接圆⊙P,并指出点D与⊙P相的位置关系;(2)E点是y轴上的一点,若直线DE与⊙P相切,求点E的坐标.【变式训练】在平面直角坐标系xOy中,对于P、Q两点给出如下定义:若点P到x、y轴的距离中的最大值等于点Q到x、y轴的距离中的最大值,则称P、Q两点

4、为“等距点”,如图中的P、Q两点即为“等距点”.(1)已知点A的坐标为(﹣3,1)①在点E(0,3)、F(3,﹣3)、G(2,﹣5)中,点A的“等距点”是  ;②若点B在直线y=x+6上,且A、B两点为“等距点”,则点B的坐标为  ;(2)直线l:y=kx﹣3(k>0)与x轴交于点C,与y轴交于点D.①若T1(﹣1,t1)、T2(4,t2)是直线l上的两点,且T1、T2为“等距点”,求k的值;②当k=1时,半径为r的⊙O上存在一点M,线段CD上存在一点N,使得M、N两点为“等距点”,直接写出r的取值范围.【能力提升】如图,在平面直角坐标系中,已知点.请在图中作出经过点A、B

5、、C三点的,并写出圆心M的坐标;,试判断直线BD与的位置关系,并说明理由.高中必备知识点2:点的轨迹在几何中,点的轨迹就是点按照某个条件运动形成的图形,它是符合某个条件的所有点组成的.例如,把长度为的线段的一个端点固定,另一个端点绕这个定点旋转一周就得到一个圆,这个圆上的每一个点到定点的距离都等于;同时,到定点的距离等于的所有点都在这个圆上.这个圆就叫做到定点的距离等于定长的点的轨迹.我们把符合某一条件的所有的点组成的图形,叫做符合这个条件的点的轨迹.这里含有两层意思:(1)图形是由符合条件的那些点组成的,就是说,图形上的任何一点都满足条件;(2)图形包含了符合条件的所有的

6、点,就是说,符合条件的任何一点都在图形上.下面,我们讨论一些常见的平面内的点的轨迹.从上面对圆的讨论,可以得出:到定点的距离等于定长的点的轨迹是以定点为圆心,定长为半径的圆.我们学过,线段垂直平分线上的每一点,和线段两个端点的距离相等;反过来,和线段两个端点的距离相等的点,都在这条线段的垂直平分线上.所以有下面的轨迹:和已知线段两个端点的距离相等的点的轨迹,是这条线段的垂直平分线.由角平分线性质定理和它的逆定理,同样可以得到另一个轨迹:到已知角的两边距离相等的点的轨迹,是这个角的平分线.典型考题【典型例题】如图,点,将绕点旋转得到.(1)请在图中画出,并写出点的坐标;(2)

7、求旋转过程中点的轨迹长.【变式训练】阅读理解:在平面直角坐标系中,若两点P、Q的坐标分别是P(x1,y1)、Q(x2,y2),则P、Q这两点间的距离为

8、PQ

9、=.如P(1,2),Q(3,4),则

10、PQ

11、==2.对于某种几何图形给出如下定义:符合一定条件的动点形成的图形,叫做符合这个条件的点的轨迹.如平面内到线段两个端点距离相等的点的轨迹是这条线段的垂直平分线.解决问题:如图,已知在平面直角坐标系xOy中,直线y=kx+交y轴于点A,点A关于x轴的对称点为点B,过点B作直线l平行于x轴.(1)到点A的距离等于线段AB

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。