【新华东师大版】九年级数学上册:22.2《一元二次方程的解法》第5课时教案(表格式)+导学案.doc

【新华东师大版】九年级数学上册:22.2《一元二次方程的解法》第5课时教案(表格式)+导学案.doc

ID:56890108

大小:138.50 KB

页数:5页

时间:2020-07-20

【新华东师大版】九年级数学上册:22.2《一元二次方程的解法》第5课时教案(表格式)+导学案.doc_第1页
【新华东师大版】九年级数学上册:22.2《一元二次方程的解法》第5课时教案(表格式)+导学案.doc_第2页
【新华东师大版】九年级数学上册:22.2《一元二次方程的解法》第5课时教案(表格式)+导学案.doc_第3页
【新华东师大版】九年级数学上册:22.2《一元二次方程的解法》第5课时教案(表格式)+导学案.doc_第4页
【新华东师大版】九年级数学上册:22.2《一元二次方程的解法》第5课时教案(表格式)+导学案.doc_第5页
资源描述:

《【新华东师大版】九年级数学上册:22.2《一元二次方程的解法》第5课时教案(表格式)+导学案.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、22.2一元二次方程的解法第五课时一元二次方程的根与系数的关系教学任务分析教学目标(1)掌握一元二次方程根与系数的关系。(2)能运用根与系数的关系求方程的两根之和与两根之积。(3)学生经历观察→发现→猜想→证明的思维过程,培养学生的分析能力和解决问题的能力。教学过程问题与情景师生活动设计意图一、温故知新:分别用公式法、因式分解法解方程:复习因式分解及公式法解方程.二、自主学习:1、探究下表中的奥秘,并完成填空。一元二次方程两个根二次三项式因式分解2、将你发现的结论写下来:一元二次方程的两根分别是和,那么将因式分解的结果为。3、运用你发现的规律填空:

2、(1)已知方程x的根是x和x,则=;=(2)已知方程x+3x-5=0的根是x和x,则=;=4、猜想:如果方程的根是x和x,则=;=5、同学们,你们的猜想对不对呢,请同学们应用求根公式分组来证明你们的猜想,好吗?(合作探讨)同学们展示自己的证明。一元二次方程ax2+bx+c=0(a≠0)的两根为    由此得出,一元二次方程的根与系数之间存在如下关系:  如果ax2+bx+c=0(a≠0)的两个根是x1,x2,那么  我们再来看二次项系数为1的一元二次方程x2+px+q=0的根与系数的关系.6、总结归纳:如果方程的根是x和x,那么=;=三、例题学习:

3、1、例(教材P34例8)2、已知方程的一个根是3,求方程的另一个根及c的值。3、已知方程的根是x和x,求下列式子的值:(1)+(2)交流与点拨:教师要示范例题,可以让学生尝试应用根与系数的关系解题。牢牢把握一元二次方程根与系数的关系四、课堂练习:1教材P35练习学生板演,教师点评。通过练习加深学生对一元二次方程根与系数的关系的理解。五、布置作业1、教材P36习题22.2第10,11题六、总结反思:(针对学习目标)可由学生自己完成,教师作适当补充。22.2一元二次方程的解法第五课时一元二次方程的根与系数的关系学习目标:1.理解并掌握根与系数关系:,;

4、2.会用根的判别式及根与系数关系解题.重点、难点重点:理解并掌握根的判别式及根与系数关系.难点:会用根的判别式及根与系数关系解题;【课前预习】阅读教材P40—42,完成课前预习1、知识准备(1)一元二次方程的一般式:(2)一元二次方程的解法:(3)一元二次方程的求根公式:2、探究1:完成下列表格方程25x2+3x-10=0-3问题:你发现什么规律?①用语言叙述你发现的规律;②x2+px+q=0的两根,用式子表示你发现的规律。探究2:完成下列表格方程2x2-3x-2=02-13x2-4x+1=01问题:上面发现的结论在这里成立吗?请完善规律;①用语言

5、叙述发现的规律;②ax2+bx+c=0的两根,用式子表示你发现的规律。3、利用求根公式推到根与系数的关系(韦达定理)ax2+bx+c=0的两根=,=========练习1:根据一元二次方程的根与系数的关系,求下列方程的两根和与两根积:(1)(2)(3)【课堂活动】活动1:预习反馈活动2:典型例题例1:不解方程,求下列方程的两根和与两根积:(1)x2-6x-15=0(2)3x2+7x-9=0(3)5x-1=4x2例2:已知方程的一个根是-3,求另一根及k的值。例3:已知α,β是方程x2-3x-5=0的两根,不解方程,求下列代数式的值例4:已知关于x的

6、方程3x2-5x-2=0,且关于y的方程的两根是x方程的两根的平方,则关于y的方程是__________活动3:随堂训练不解方程求下列方程的两根和与积:(1)x2-3x=15(2)5x2-1=4x2+x(3)x2-3x+2=10(4)4x2-144=0(5)3x(x-1)=2(x-1)(6)(2x-1)2=(3-x)2活动4:课堂小结一元二次方程的根与系数的关系:【课后巩固】一、填空1.若方程(a≠0)的两根为,则=,=__2.若方程则=,=__3.若方程的一个根2,则它的另一个根为____p=____4.已知方程的一个根1,则它的另一根是____

7、m=____5.若0和-3是方程的两根,则p+q=____6.在解方程x2+px+q=0时,甲同学看错了p,解得方程根为x=1与x=-3;乙同学看错了q,解得方程的根为x=4与x=-2,你认为方程中的p=——,q=——。二、选择1.两根均为负数的一元二次方程是()ABCD2.若方程的两根中只有一个为0,那么()Ap=q=0BP=0,q≠0Cp≠0,q=0Dp≠0,q≠0)三、不解方程,求下列方程的两根和与两根积:(1)x2-5x-10=0(2)2x2+7x+1=0(3)3x2-1=2x+5(5)x(x-1)=3x+7(5)x2-3x+1=0(6)3

8、x2-2x=2

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。