欢迎来到天天文库
浏览记录
ID:56863400
大小:1.01 MB
页数:14页
时间:2020-07-16
《浙江省嘉兴市2018_2019学年高一数学下学期期末考试试题(含解析).doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、浙江省嘉兴市2018-2019学年高一数学下学期期末考试试题(含解析)【考生须知】1.本科考试分试题卷和答题卷,考生须在答题卷上作答;2.本科考试时间为120分钟,满分为100分.一、选择题(本大题有10小题,每小题4分,共40分.)1.直线的倾斜角为A.B.C.D.【答案】D【解析】【分析】求得直线的斜率,由此求得直线的倾斜角.【详解】依题意,直线的斜率为,对应的倾斜角为,故选D.【点睛】本小题主要考查由直线一般式求斜率和倾斜角,考查特殊角的三角函数值,属于基础题.2.在等差数列中,,则A.32B.45C.64D
2、.96【答案】B【解析】【分析】利用等差数列的性质列方程,解方程求得的值.【详解】根据等差数列的性质有,故选B.【点睛】本小题主要考查等差数列的性质,考查观察能力,属于基础题.3.已知,则-14-A.B.C.D.【答案】B【解析】【分析】直接利用二倍角公式求出结果.【详解】依题意,故选B.【点睛】本小题主要考查余弦的二倍角公式的应用,考查运算求解能力,属于基础题.4.已知,则下列不等式不成立的是A.B.C.D.【答案】B【解析】【分析】根据指数函数、对数函数的单调性,以及不等式的性质,对选项逐一分析,由此得出不等式
3、不成立的选项.【详解】依题意,由于为定义域上的减函数,故,故A选项不等式成立.由于为定义域上的增函数,故,则,所以B选项不等式不成立,D选项不等式成立.由于,故,所以C选项不等式成立.综上所述,本小题选B.【点睛】本小题主要考查指数函数和对数函数的单调性,考查不等式的性质,属于基础题.5.已知实数满足约束条件,则的最小值是A.B.C.1D.2-14-【答案】A【解析】【分析】画出可行域,向下平移基准直线到可行域边界的位置,由此求得目标函数的最小值.【详解】画出可行域如下图所示,向下平移基准直线到可行域边界点,由此求
4、得最小值为,故选A.【点睛】本小题主要考查线性规划问题,考查数形结合的数学思想方法,属于基础题.6.已知数列满足:,则的前10项和为A.B.C.D.【答案】D【解析】【分析】利用裂项求和法求得数列前项和.【详解】依题意,故.-14-【点睛】本小题主要考查裂项求和法求数列的前项和,考查运算求解能力,属于基础题.7.中,角所对的边分别为,若,则角的值A.B.C.或D.或【答案】C【解析】由题意得,在中,根据余弦定理,有意义,,是的内角,或故选8.等比数列前项和为,则下列一定成立的是A.若,则B.若,则C.若,则D.若,
5、则【答案】C【解析】【分析】根据特殊的等比数列对选项进行排除,由此得出正确选项.-14-【详解】不妨设为等比数列,由此排除A,B两个选项.不妨设,,由此排除D选项.故本小题选C.【点睛】本小题主要考查等比数列的性质,考查选择题特殊值的解法,属于基础题.9.已知,,且,则的最小值为A.B.C.5D.9【答案】A【解析】【分析】先求得的表达式,代入中,然后利用基本不等式求得最小值.【详解】由得,解得.所以,当且仅当,即时等号成立.故本小题选A.【点睛】本小题主要考查利用基本不等式求最小值,考查化归与转化的数学思想方法,
6、属于中档题.10.在中,,的中点为,若长度为3的线段(在的左侧)在直线上移动,则的最小值为A.B.C.D.【答案】B【解析】【分析】-14-先根据正弦定理求得,以所在直线为轴,建立平面直角坐标系,根据对称性和两点间的距离公式,求得所求的最小值.【详解】由正弦定理可得,,以BC所在直线轴,则,则表示轴上的点P与A和的距离和,利用对称性,关于轴的对称点为,可得的最小值为=.【点睛】本小题主要考查利用正弦定理解三角形,考查距离和的最小值的求法,考查坐标法,属于中档题.二、填空题(本大题有8小题,每小题3分,共24分,请将
7、答案写在答题卷上)-14-11.计算的结果为_____.【答案】.【解析】【分析】利用两角差的正弦公式对表达式进行化简,由此求得表达式的结果.【详解】依题意,原式.【点睛】本小题主要考查两角差的正弦公式,考查特殊角的三角函数值,属于基础题.12.倾斜角为且过点直线方程为______.【答案】.【解析】【分析】直接根据直线方程点斜式写出直线方程,化简后得到所求的结果.【详解】依题意得,化简得.【点睛】本小题主要考查直线方程点斜式,考查倾斜角和斜率的对应关系,属于基础题.13.若直线与直线平行,则实数_____.【答案
8、】1.【解析】【分析】根据两条直线平行的条件列方程,解方程求得的值,排除重合的情况后求出结果.【详解】由于两直线平行,故,解得,当时,,与重合,不符合题意,故.【点睛】本小题主要考查两条直线的位置关系,考查两直线平行的表示,属于基础题.14.已知α为锐角,且cos(α+)=,则sinα=________.-14-【答案】【解析】。点睛:本题考查三角恒等关系的
此文档下载收益归作者所有