资源描述:
《多元回归分析.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第八章SPSS的相关分析和回归分析(三)多元线性回归分析多元线性回归分析的主要问题回归方程的检验自变量筛选多重共线性问题多元线性回归分析应用举例根据10个市场区在特定周内某产品的销售额、广告费、人口密度数据,建立销售额的预测模型多元线性回归分析操作(1)菜单选项:analyze->regression->linear…(2)选择一个变量为因变量进入dependent框(3)选择一个或多个变量为自变量进入independent框(4)选择多元回归分析的自变量筛选方法:enter:所选变量全部进入回归方程(默
2、认方法)remove:从回归方程中剔除变量stepwise:逐步筛选;backward:向后筛选;forward:向前筛选(5)对样本进行筛选(selectionvariable)利用满足一定条件的样本数据进行回归分析(6)指定作图时各数据点的标志变量(caselabels)多元线性回归方程的检验(一)拟和优度检验:(1)判定系数R2:R是y和xi的复相关系数(或观察值与预测值的相关系数),测定了因变量y与所有自变量全体之间线性相关程度(2)调整的R2:考虑的是平均的剩余平方和,克服了因自变量增加而造成R
3、2也增大的弱点在某个自变量引入回归方程后,如果该自变量是理想的且对因变量变差的解释说明是有意义的,那么必然使得均方误差减少,从而使调整的R2得到提高;反之,如果某个自变量对因变量的解释说明没有意义,那么引入它不会造成均方误差减少,从而调整的R2也不会提高。多元线性回归方程的检验(二)回归方程的显著性检验:(1)目的:检验所有自变量与因变量之间的线性关系是否显著,是否可用线性模型来表示.(2)H0:β1=β2=…=βk=0即:所有回归系数同时与0无显著差异(3)利用F检验,构造F统计量:F=平均的回归平方和
4、/平均的剩余平方和~F(k,n-k-1)如果F值较大,则说明自变量造成的因变量的线性变动大于随机因素对因变量的影响,自变量于因变量之间的线性关系较显著(4)计算F统计量的值和相伴概率p(5)判断p<=a:拒绝H0,即:所有回归系数与0有显著差异,自变量与因变量之间存在显著的线性关系。反之,不能拒绝H0多元线性回归方程的检验(三)回归系数的显著性检验(1)目的:检验每个自变量对因变量的线性影响是否显著.(2)H0:βi=0即:第i个回归系数与0无显著差异(3)利用t检验,构造t统计量:其中:Sy是回归方程标
5、准误差(StandardError)的估计值,由均方误差开方后得到,反映了回归方程无法解释样本数据点的程度或偏离样本数据点的程度如果某个回归系数的标准误差较小,必然得到一个相对较大的t值,表明该自变量xi解释因变量线性变化的能力较强。(4)逐个计算t统计量的值和相伴概率p(5)判断多元线性回归分析应用举例根据若干年国民收入和其他相关数据,对国民收入的影响因素进行分析多元线性回归分析中的自变量筛选(一)自变量筛选的目的多元回归分析引入多个自变量.如果引入的自变量个数较少,则不能很好的说明因变量的变化;并非自
6、变量引入越多越好.原因:有些自变量可能对因变量的解释没有贡献自变量间可能存在较强的线性关系,即:多重共线性.因而不能全部引入回归方程.多元线性回归分析中的自变量筛选(二)自变量向前筛选法(forward):即:自变量不断进入回归方程的过程.首先,选择与因变量具有最高相关系数的自变量进入方程,并进行各种检验;其次,在剩余的自变量中寻找偏相关系数最高的变量进入回归方程,并进行检验;默认:回归系数检验的概率值小于PIN(0.05)才可以进入方程.反复上述步骤,直到没有可进入方程的自变量为止.多元线性回归分析中的
7、自变量筛选(三)自变量向后筛选法(backward):即:自变量不断剔除出回归方程的过程.首先,将所有自变量全部引入回归方程;其次,在一个或多个t值不显著的自变量中将t值最小的那个变量剔除出去,并重新拟和方程和进行检验;默认:回归系数检验值大于POUT(0.10),则剔除出方程如果新方程中所有变量的回归系数t值都是显著的,则变量筛选过程结束.否则,重复上述过程,直到无变量可剔除为止.多元线性回归分析中的自变量筛选(四)自变量逐步筛选法(stepwise):即:是“向前法”和“向后法”的结合。向前法只对进入
8、方程的变量的回归系数进行显著性检验,而对已经进入方程的其他变量的回归系数不再进行显著性检验,即:变量一旦进入方程就不回被剔除随着变量的逐个引进,由于变量之间存在着一定程度的相关性,使得已经进入方程的变量其回归系数不再显著,因此会造成最后的回归方程可能包含不显著的变量。逐步筛选法则在变量的每一个阶段都考虑的剔除一个变量的可能性。SPSS操作:options选项:steppingmethodcriteria:逐步筛选法参数设置.u