多元函数的极值及其求法2013.ppt

多元函数的极值及其求法2013.ppt

ID:56802557

大小:707.50 KB

页数:28页

时间:2020-06-28

多元函数的极值及其求法2013.ppt_第1页
多元函数的极值及其求法2013.ppt_第2页
多元函数的极值及其求法2013.ppt_第3页
多元函数的极值及其求法2013.ppt_第4页
多元函数的极值及其求法2013.ppt_第5页
资源描述:

《多元函数的极值及其求法2013.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第九章山东交通学院高等数学教研室第八节多元函数的极值及其求法一、多元函数的极值二、最值应用问题三、条件极值回忆一元函数的极值设在内有定义,如果有或则称是的一个极大值或极小值必要条件:定义:在处可导,且在处取得极值,那么最值一、多元函数的极值定义:若函数则称函数在该点取得极大值例如:在点(0,0)有极小值;在点(0,0)有极大值;在点(0,0)无极值.极大值和极小值统称为极值,使函数取得极值的点称为极值点.的某去心邻域内有(极小值).说明:使偏导数都为0的点称为驻点.例如,定理1(必要条件)函数偏导数,证:据一元函数极值的必要条件可知定理结论成立.取得极值,取得极值取得极值但驻点不一定是极值点

2、.有驻点(0,0),但在该点不取极值.且在该点取得极值,则有存在故从几何上看,若曲面z=f(x,y)在点处有切平面,成为平行于xoy坐标面的平面则切平面时,具有极值定理2(充分条件)的某邻域内具有一阶和二阶连续偏导数,令则:1)当A<0时取极大值;A>0时取极小值.2)当3)当时,没有极值.时,不能确定,需另行讨论.若函数且例2.求函数解:第一步求驻点.得驻点:(1,0),(1,2),(–3,0),(–3,2).第二步判别.在点(1,0)处为极小值;解方程组的极值.求二阶偏导数在点(3,0)处不是极值;在点(3,2)处为极大值.在点(1,2)处不是极值;极值的概念和必要条件可推广到多元函

3、数定义:设n元函数的定义域是是的内点,若的某邻域使得该邻域内异于的任何点都有或则称在取得极大值(或极小值)。必要条件:三元函数在有偏导数,且取得极值,则二、最值应用问题函数f在闭域上连续函数f在闭域上可达到最值最值可疑点极值点边界上的最值点特别,当区域内部最值存在,且只有一个极值点P时,为极小值为最小值(大)(大)依据例4.解:设水箱长,宽分别为x,ym,则高为则水箱所用材料的面积为令得驻点某厂要用铁板做一个体积为2根据实际问题可知最小值在定义域内应存在,的有盖长方体水箱,问当长、宽、高各取怎样的尺寸时,才能使用料最省?因此可断定此唯一驻点就是最小值点.即当长、宽均为高为时,水箱所用材料最省

4、.例5.有一宽为24cm的长方形铁板,把它折起来做成解:设折起来的边长为xcm,则断面面积x24一个断面为等腰梯形的水槽,倾角为,积最大.为问怎样折法才能使断面面令解得:由题意知,最大值在定义域D内达到,而在域D内只有一个驻点,故此点即为所求.三、条件极值极值问题无条件极值:条件极值:条件极值的求法:方法1代入法.求一元函数的无条件极值问题对自变量只有定义域限制对自变量除定义域限制外,还有其他条件限制例如,转化方法2拉格朗日乘数法.例如,引入辅助函数辅助函数F称为拉格朗日(Lagrange)函数.利用拉格则极值点满足:朗日函数求极值的方法称为拉格朗日乘数法.推广拉格朗日乘数法可推广到多个自

5、变量和多个约束条件的情形.设解方程组可得到条件极值的可疑点.例如,求函数下的极值.在条件例6.要设计一个容量为则问题为求x,y,令解方程组解:设x,y,z分别表示长、宽、高,下水箱表面积最小.z使在条件水箱长、宽、高等于多少时所用材料最省?的长方体开口水箱,试问得唯一驻点由题意可知合理的设计是存在的,长、宽为高的2倍时,所用材料最省.因此,当高为思考:1)当水箱封闭时,长、宽、高的尺寸如何?提示:利用对称性可知,2)当开口水箱底部的造价为侧面的二倍时,欲使造价应如何设拉格朗日函数?长、宽、高尺寸如何?提示:长、宽、高尺寸相等.最省,内容小结1.函数的极值问题第一步利用必要条件在定义域内找驻点

6、.即解方程组第二步利用充分条件判别驻点是否为极值点.2.函数的条件极值问题(1)简单问题用代入法如对二元函数(2)一般问题用拉格朗日乘数法第二步判别•比较驻点及边界点上函数值的大小•根据问题的实际意义确定最值第一步找目标函数,确定定义域(及约束条件)3.函数的最值问题已知平面上两定点A(1,3),B(4,2),试在椭圆圆周上求一点C,使△ABC面积S△最大.解答提示:设C点坐标为(x,y),思考与练习则设拉格朗日函数解方程组得驻点对应面积而比较可知,点C与E重合时,三角形面积最大.点击图中任意点动画开始或暂停注备用题1.求半径为R的圆的内接三角形中面积最大者.解:设内接三角形各边所对的圆心角

7、为x,y,z,它们所对应的三个三角形面积分别为设拉氏函数解方程组,得故圆内接正三角形面积最大,最大面积为注则注因此前者不可能为圆内接三角形中面积最大者.若∆ABC位于半圆内(如图),则其BC边上的高小于∆A1BC同边上的高,故前者的面积小于后者,为边的面积最大的四边形,试列出其目标函数和约束条件?提示:目标函数:约束条件:答案:即四边形内接于圆时面积最大.2.求平面上以3.设某电视机厂生产一台电视机的成本为c

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。