欢迎来到天天文库
浏览记录
ID:56744994
大小:423.00 KB
页数:11页
时间:2020-07-07
《高考数学二轮专题复习 不等式及线性规划教案 文.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第4讲 不等式及线性规划【高考考情解读】 1.本讲在高考中主要考查两数的大小比较、一元二次不等式的解法、基本不等式及线性规划问题.基本不等式主要考查求最值问题,线性规划主要考查直接求最优解和已知最优解求参数的值或取值范围.2.多与集合、函数等知识交汇命题,以填空题的形式呈现,属中档题.1.四类不等式的解法(1)一元二次不等式的解法先化为一般形式ax2+bx+c>0(a≠0),再求相应一元二次方程ax2+bx+c=0(a≠0)的根,最后根据相应二次函数图象与x轴的位置关系,确定一元二次不等式的解集.(2)简单分式不等式的解法①变形⇒>0(<0)⇔f(x)g(x)>0(<0);②变形⇒
2、≥0(≤0)⇔f(x)g(x)≥0(≤0)且g(x)≠0.(3)简单指数不等式的解法①当a>1时,af(x)>ag(x)⇔f(x)>g(x);②当0ag(x)⇔f(x)1时,logaf(x)>logag(x)⇔f(x)>g(x)且f(x)>0,g(x)>0;②当0logag(x)⇔f(x)0,g(x)>0.2.五个重要不等式(1)
3、a
4、≥0,a2≥0(a∈R).(2)a2+b2≥2ab(a、b∈R).(3)≥(a>0,b>0).(4)ab≤()2(a,b∈R).
5、(5)≥≥≥(a>0,b>0).3.二元一次不等式(组)和简单的线性规划(1)线性规划问题的有关概念:线性约束条件、线性目标函数、可行域、最优解等.(2)解不含实际背景的线性规划问题的一般步骤:①画出可行域;②根据线性目标函数的几何意义确定其取得最优解的点;③求出目标函数的最大值或者最小值.4.两个常用结论(1)ax2+bx+c>0(a≠0)恒成立的条件是(2)ax2+bx+c<0(a≠0)恒成立的条件是考点一 一元二次不等式的解法例1 (2012·江苏)已知函数f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),若关于x的不等式f(x)6、的值为________.答案 9解析 由题意知f(x)=x2+ax+b=2+b-.∵f(x)的值域为[0,+∞),∴b-=0,即b=.∴f(x)=2.又∵f(x)0的解集为,则(其中a>b)的最小值为________.(2)设命题p:{x7、0≤2x-1≤1},命题q:{x8、9、x2-(2k+1)x+k(k+1)≤0},若p是q的充分不必要条件,则实数k的取值范围是__________.答案 (1)6 (2)解析 (1)由题意知a>0且Δ=4-4ab=0,即ab=1,则由a>b得a-b>0.故==a-b+≥2=6,当且仅当a-b=3时取“=”.(2)p:{x10、≤x≤1},q:{x11、k≤x≤k+1},由p⇒q且qD⇒/p,则或,∴0≤k≤,即k的取值范围是.考点二 利用基本不等式求最值问题例2 (1)(2012·浙江)若正数x,y满足x+3y=5xy,则3x+4y的最小值是________.(2)设x,y为实数,若4x2+y2+xy=1,则2x+y的最大值是12、________.答案 (1)5 (2)解析 (1)∵x>0,y>0,由x+3y=5xy得=1.∴3x+4y=(3x+4y)==+≥+×2=5(当且仅当x=2y时取等号),∴3x+4y的最小值为5.(2)方法一 ∵4x2+y2+xy=1,∴(2x+y)2-3xy=1,即(2x+y)2-·2xy=1,∴(2x+y)2-·2≤1,解之得(2x+y)2≤,即2x+y≤.等号当且仅当2x=y>0,即x=,y=时成立.方法二 令t=2x+y,则y=t-2x,代入4x2+y2+xy=1,得6x2-3tx+t2-1=0,由于x是实数,故Δ=9t2-24(t2-1)≥0,解得t2≤,即-≤t≤,即13、t的最大值也就是2x+y的最大值,为.方法三 化已知4x2+y2+xy=1为2+2=1,令2x+y=cosα,y=sinα,则y=sinα,则2x+y=2x+y+y=cosα+sinα=sin(α+φ)≤.在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.解题时应根据已知条件适当进行添(拆)项,创造应用基本不等式的条
6、的值为________.答案 9解析 由题意知f(x)=x2+ax+b=2+b-.∵f(x)的值域为[0,+∞),∴b-=0,即b=.∴f(x)=2.又∵f(x)0的解集为,则(其中a>b)的最小值为________.(2)设命题p:{x
7、0≤2x-1≤1},命题q:{x
8、
9、x2-(2k+1)x+k(k+1)≤0},若p是q的充分不必要条件,则实数k的取值范围是__________.答案 (1)6 (2)解析 (1)由题意知a>0且Δ=4-4ab=0,即ab=1,则由a>b得a-b>0.故==a-b+≥2=6,当且仅当a-b=3时取“=”.(2)p:{x
10、≤x≤1},q:{x
11、k≤x≤k+1},由p⇒q且qD⇒/p,则或,∴0≤k≤,即k的取值范围是.考点二 利用基本不等式求最值问题例2 (1)(2012·浙江)若正数x,y满足x+3y=5xy,则3x+4y的最小值是________.(2)设x,y为实数,若4x2+y2+xy=1,则2x+y的最大值是
12、________.答案 (1)5 (2)解析 (1)∵x>0,y>0,由x+3y=5xy得=1.∴3x+4y=(3x+4y)==+≥+×2=5(当且仅当x=2y时取等号),∴3x+4y的最小值为5.(2)方法一 ∵4x2+y2+xy=1,∴(2x+y)2-3xy=1,即(2x+y)2-·2xy=1,∴(2x+y)2-·2≤1,解之得(2x+y)2≤,即2x+y≤.等号当且仅当2x=y>0,即x=,y=时成立.方法二 令t=2x+y,则y=t-2x,代入4x2+y2+xy=1,得6x2-3tx+t2-1=0,由于x是实数,故Δ=9t2-24(t2-1)≥0,解得t2≤,即-≤t≤,即
13、t的最大值也就是2x+y的最大值,为.方法三 化已知4x2+y2+xy=1为2+2=1,令2x+y=cosα,y=sinα,则y=sinα,则2x+y=2x+y+y=cosα+sinα=sin(α+φ)≤.在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.解题时应根据已知条件适当进行添(拆)项,创造应用基本不等式的条
此文档下载收益归作者所有