欢迎来到天天文库
浏览记录
ID:56680557
大小:115.50 KB
页数:2页
时间:2020-07-04
《高中数学 集合的含义与表示教案2 新人教版必修.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、课题:集合的含义与表示(2)课型:新授课教学目标:(1)了解集合的表示方法;(2)能正确选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;教学重点:掌握集合的表示方法;教学难点:选择恰当的表示方法;教学过程:一、复习回顾:1.集合和元素的定义;元素的三个特性;元素与集合的关系;常用的数集及表示。2.集合{1,2}、{(1,2)}、{(2,1)}、{2,1}的元素分别是什么?有何关系二、新课教学(一).集合的表示方法我们可以用自然语言和图形语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。(1)列举法:
2、把集合中的元素一一列举出来,并用花括号“”括起来表示集合的方法叫列举法。如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…;说明:1.集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。 2.各个元素之间要用逗号隔开; 3.元素不能重复;4.集合中的元素可以数,点,代数式等; 5.对于含有较多元素的集合,用列举法表示时,必须把元素间的规律显示清楚后方能用省略号,象自然数集N用列举法表示为例1.(课本例1)用列举法表示下列集合:(1)小于10的所有自然数组成的集合;(2)方程x2=x的所有实数根组成的集合;(3)由1到20以内的所有质
3、数组成的集合;(4)方程组的解组成的集合。思考2:(课本P4的思考题)得出描述法的定义:(2)描述法:把集合中的元素的公共属性描述出来,写在花括号{ }内。具体方法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。一般格式:如:{x
4、x-3>2},{(x,y)
5、y=x2+1},{x︳直角三角形},…;说明:1.课本P5最后一段话;2.描述法表示集合应注意集合的代表元素,如{(x,y)
6、y=x2+3x+2}与{y
7、y=x2+3x+2}是不同的两个集合,只要不引起误解,集合的代表元素也可省略,例如:{x︳整数},
8、即代表整数集Z。辨析:这里的{ }已包含“所有”的意思,所以不必写{全体整数}。下列写法{实数集},{R}也是错误的。例2.(课本例2)试分别用列举法和描述法表示下列集合:(1)方程x2—2=0的所有实数根组成的集合;(2)由大于10小于20的所有整数组成的集合;(3)方程组的解。思考3:(课本P6思考)说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。(二).课堂练习:1.课本P6练习2;2.用适当的方法表示集合:大于0的所有奇数3.集合A={x
9、∈Z,x∈N},则它的元素是。4.已知集合A={x
10、-3<
11、x<3,x∈Z},B={(x,y)
12、y=x+1,x∈A},则集合B用列举法表示是归纳小结:本节课从实例入手,介绍了集合的常用表示方法,包括列举法、描述法。作业布置:1.习题1.1,第3.4题;2.课后预习集合间的基本关系.课后记:
此文档下载收益归作者所有