高中数学 第3章 概率 2 第2课时 建立概率模型教学案 北师大版必修.doc

高中数学 第3章 概率 2 第2课时 建立概率模型教学案 北师大版必修.doc

ID:56677488

大小:492.50 KB

页数:9页

时间:2020-07-04

高中数学 第3章 概率 2 第2课时 建立概率模型教学案 北师大版必修.doc_第1页
高中数学 第3章 概率 2 第2课时 建立概率模型教学案 北师大版必修.doc_第2页
高中数学 第3章 概率 2 第2课时 建立概率模型教学案 北师大版必修.doc_第3页
高中数学 第3章 概率 2 第2课时 建立概率模型教学案 北师大版必修.doc_第4页
高中数学 第3章 概率 2 第2课时 建立概率模型教学案 北师大版必修.doc_第5页
资源描述:

《高中数学 第3章 概率 2 第2课时 建立概率模型教学案 北师大版必修.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第2课时 建立概率模型[核心必知]建立不同的古典概型在建立概率模型时,把什么看作是一个基本事件(即一个试验结果)是人为规定的.我们只要求:每次试验有一个并且只有一个基本事件出现.只要基本事件的个数是有限的,并且它们的发生是等可能的,就是一个古典概型.[问题思考]甲、乙、丙三人站队,求甲站在最左边的概率.1.若只考虑甲的站法,基本事件的总数是多少?甲站在最左边的概率是多少?提示:3种;P=.2.若只考虑最左边位置的站法,基本事件总数是多少?甲站在最左边的概率是多少?提示:3种;P=.3.若考虑所有人的站法,基本事件的总数是多少?甲站在最左边的概率是多少?提示:6种;P=.讲一讲1.

2、从含有两件正品a1,a2和一件次品b1的三件产品中,每次任取一件,每次取出后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率.[尝试解答] 每次取出一个,取后不放回地连续取两次,其一切可能的结果组成的基本事件有6个,即(a1,a2),(a1,b1),(a2,a1),(a2,b1),(b1,a1),(b1,a2).其中小括号内左边的字母表示第1次取出的产品,右边的字母表示第2次取出的产品.总的事件个数为6,而且可以认为这些基本事件是等可能的.用A表示“取出的两件中恰有一件次品”,这一事件,所以A={(a1,b1),(a2,b1),(b1,a1),(b1,a2)}.因为事件A

3、由4个基本事件组成,所以P(A)==.“有放回”与“不放回”问题的区别在于:对于某一试验,若采用“有放回”抽样,则同一个个体可能被重复抽取,而采用“不放回”抽样,则同一个个体不可能被重复抽取.练一练1.一个盒子里装有完全相同的十个小球,分别标上1,2,3,…,10这10个数字,今随机地抽取两个小球,如果:(1)小球是不放回的;(2)小球是有放回的.求两个小球上的数字为相邻整数的概率.解:设事件A:两个小球上的数字为相邻整数.则事件A包括的基本事件有:(1,2),(2,3),(3,4),(4,5),(5,6),(6,7),(7,8),(8,9),(9,10),(10,9),(9,8

4、),(8,7),(7,6),(6,5),(5,4),(4,3),(3,2),(2,1)共18个.(1)不放回取球时,总的基本事件数为90,故P(A)==.(2)有放回取球时,总的基本事件数为100,故P(A)==.讲一讲2.某乒乓球队有男乒乓球运动员4名、女乒乓球运动员3名,现要选一男一女两名运动员组成混合双打组合参加某项比赛,试列出全部可能的结果;若某女乒乓球运动员为国家一级运动员,则她参赛的概率是多少?[尝试解答] 由于男运动员从4人中任意选取,女运动员从3人中任意选取,为了得到试验的全部结果,我们设男运动员为A,B,C,D,女运动员为1,2,3,我们可以用一个“有序数对”来

5、表示随机选取的结果.如(A,1)表示:第一次随机选取从男运动员中选取的是男运动员A,从女运动员中选取的是女运动员1,可用列表法列出所有可能的结果.如下表所示,设“国家一级运动员参赛”为事件E.    女 结果     男      123A(A,1)(A,2)(A,3)B(B,1)(B,2)(B,3)C(C,1)(C,2)(C,3)D(D,1)(D,2)(D,3)由上表可知,可能的结果总数是12个.设女运动员1为国家一级运动员,她参赛的可能事件有4个,故她参赛的概率为P(E)==.本讲列出全部可能的结果用的是列表法.列表法的优点是准确、全面、不易漏掉,对于试验的结果不是太多的情况

6、,都可以采用此法,当然也可以用列举法.练一练2.在一次数学研究性实践活动中,兴趣小组做了两个均匀的正方体玩具,组长同时抛掷2个均匀的正方体玩具(各个面上分别标上数字1、2、3、4、5、6)后,让小组成员求:(1)两个正方体朝上一面数字相同的概率是多少?(2)两个正方体朝上一面数字之积为偶数的概率是多少?解:两个玩具正面向上的情况如下表:1234561(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)2(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)3(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)4(4,1)(4,2)(4,3)(4,4)(4,5

7、)(4,6)5(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)6(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)(1)事件“两个正方体朝上一面数字相同的情况”只有6种,故它的概率是=.(2)事件“两个正方体朝上一面数字之积为偶数的情况”有27种,如表中有下划线的情况,即两个正方体朝上一面数字之积为偶数的概率为=.讲一讲3.口袋里装有两个白球和两个黑球,这四个球除颜色外完全相同,甲、乙、丙、丁四个人按顺序依次从中摸出一球,试求乙摸到白球,且丙摸到黑球的概率.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。