欢迎来到天天文库
浏览记录
ID:56675141
大小:192.50 KB
页数:3页
时间:2020-07-04
《高中数学 2.3变量间的相关关系导学案 新人教A版必修 .doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、湖南省邵阳市隆回县第二中学高中数学2.3变量间的相关关系导学案新人教A版必修3【学习目标】1.通过收集现实问题中两个有关联变量的数据作散点图,并利用散点图直观认识变量间的相关关系.2.经历用不同估算方法描述两个变量线性相关的过程,知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程.【重点难点】重点:作出散点图和根据给出的线性回归方程系数公式建立线性回归方程难点:对最小二乘法的理解。【学法指导】一、预习目标1.通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间相关关系;2.知道最小二乘法的思想,能根据给出的线性回归方
2、程系数公式建立线性回归方程。二、预习内容1.举例说明函数关系为什么是确定关系?2.一个人的身高与体重是函数关系吗?3.相关关系的概念:4.什么叫做散点图?5.回归分析,(1)求回归直线方程的思想方法;(2)回归直线方程的求法三、【学习过程】思考:考察下列问题中两个变量之间的关系:(1)商品销售收入与广告支出经费;(2)粮食产量与施肥量;(3)人体内的脂肪含量与年龄.这些问题中两个变量之间的关系是函数关系吗?(一)、相关关系:自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系,叫做相关关系。思考探究:1、有关法律规定,香烟盒上必须印上“吸烟有害健康
3、”的警示语。吸烟是否一定会引起健康问题?你认为“健康问题不一定是由吸烟引起的,所以可以吸烟”的说法对吗?2、某地区的环境条件适合天鹅栖息繁衍,有人经统计发现了一个有趣的现象,如果村庄附近栖息的天鹅多,那么这个村庄的婴儿出生率也高,天鹅少的地方婴儿出生率低,于是他得出了一个结论:天鹅能够带来孩子。你认为这样的结论可靠吗?如何证明这个问题的可靠性?(二)、散点图探究:在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据:年龄23273941454950脂肪9.517.821.225.927.526.328.2年龄53545657586061脂肪29.
4、630.231.430.833.535.234.6其中各年龄对应的脂肪数据是这个年龄人群脂肪含量的样本平均数。思考探究:1、对某一个人来说,他的体内脂肪含量不一定随年龄增长而增加或减少,但是如果把很多个体放在一起,就可能表现出一定的规律性.观察上表中的数据,大体上看,随着年龄的增加,人体脂肪含量怎样变化?2、为了确定年龄和人体脂肪含量之间的更明确的关系,我们需要对数据进行分析,通过作图可以对两个变量之间的关系有一个直观的印象.以x轴表示年龄,y轴表示脂肪含量,你能在直角坐标系中描出样本数据对应的图形吗?3、观察人的年龄的与人体脂肪含量散点图的大致趋势,有什么样
5、的特点?阅读课本,这种相关关系我们称为什么?还有没有其他的相关关系?它又有怎样的特点?(三)、线性相关、回归直线方程和最小二乘法在各种各样的散点图中,有些散点图中的点是杂乱分布的,有些散点图中的点的分布有一定的规律性,年龄和人体脂肪含量的样本数据的散点图中的点的分布有什么特点?如果散点图中的点的分布,从整体上看大致在一条直线附近,则称这两个变量之间具有线性相关关系,这条直线叫做回归直线。我们所画的回归直线应该使散点图中的各点在整体上尽可能的与其接近。我们怎么来实现这一目的呢?说一说你的想法。这样,问题就归结为:当a、b取什么值时Q最小,a、b的值由下面的公式给
6、出:其中=,=,a为回归方程的斜率,b为截距。求回归直线,使得样本数据的点到它的距离的平方和最小的方法叫最小二乘法。【例题精析】【例】下表是某小卖部6天卖出热茶的杯数与当天气温的对比表:气温/℃261813104-1杯数202434385064(1)将上表中的数据制成散点图.(2)你能从散点图中发现温度与饮料杯数近似成什么关系吗?(3)如果近似成线性关系的话,请求出回归直线方程来近似地表示这种线性关系.(4)如果某天的气温是-5℃时,预测这天小卖部卖出热茶的杯数.【基础达标】1.有关线性回归的说法,不正确的是A.相关关系的两个变量不是因果关系B.散点图能直观地
7、反映数据的相关程度C.回归直线最能代表线性相关的两个变量之间的关系D.任一组数据都有回归方程2.回归方程=1.5x-15,则A.=1.5-15B.15是回归系数aC.1.5是回归系数aD.x=10时,y=03.线性回归方程=bx+a过定点________.【学习反思】1、求样本数据的线性回归方程,可按下列步骤进行:(1)计算平均数,;(2)求a,b;(3)写出回归直线方程。2、回归方程被样本数据惟一确定,对同一个总体,不同的样本数据对应不同的回归直线,所以回归直线也具有随机性.。3、对于任意一组样本数据,利用上述公式都可以求得“回归方程”,如果这组数据不具有线
8、性相关关系,即不存在回归直线,那么所得
此文档下载收益归作者所有