高中数学1.6 三角函数模型的简单应用学案 新人教A版必修.doc

高中数学1.6 三角函数模型的简单应用学案 新人教A版必修.doc

ID:56672510

大小:22.50 KB

页数:3页

时间:2020-07-03

高中数学1.6 三角函数模型的简单应用学案 新人教A版必修.doc_第1页
高中数学1.6 三角函数模型的简单应用学案 新人教A版必修.doc_第2页
高中数学1.6 三角函数模型的简单应用学案 新人教A版必修.doc_第3页
资源描述:

《高中数学1.6 三角函数模型的简单应用学案 新人教A版必修.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第十四课时1.6三角函数模型的简单应用【学习目标】体会三角函数是描述周期变化现象的重要的数学模型;学会将简单的实际问题抽象为与三角函数有关的简单函数模型,从而利用三角函数的相关知识解决问题【课前导学】1.应用三角函数模型解决问题,首先要把实际问题抽象为数学问题,通过分析它的变化趋势确定它的周期,从而建立起适当的三角函数模型.解决问题的一般程序是:(1)审题:先审清楚题目条件、要求,理解数学关系;(2)建模:分析题目条件(如周期性等),选择适当三角函数模型;(3)求解:对所建立的三角函数模型进行分析研究,得到数学结论;(4)还原

2、:把数学结论还原为实际问题的解答.2.解决有关三角函数的实际问题时,要注意:自变量x的变化范围;数形结合,通过观察图形,获得本质认识;要认真仔细地审题,多进行联想、运用适当的数学模型;涉及复杂的数据,往往需要借助使用信息技术工具.3.通常用函数y=Asin(ωx+φ)+b来刻画现实生活中重复出现的现象.例1.某港口相邻两次高潮发生的时间间隔12h20min,低潮时入口处水的深度为2.8m,高潮时为8.4m,一次高潮发生在10月3日2∶00.(1)若从10月3日0∶00开始计算时间,选用一个三角函数来近似描述这个港口的水深d(m

3、)和时间t(h)之间的函数关系;(2)求出10月5日4∶00水的深度例2已知某海滨浴场海浪的高度y(米)是时间t(0≤t≤24,单位:小时)的函数,记作:y=f(t),下表是某日各时的浪高数据:经长期观测,y=f(t)的曲线可近似地看成是函数y=Acosωt+b.(1)根据以上数据,求函数y=Acosωt+b的最小正周期T、振幅A及函数表达式;(2)依据规定,当海浪高度高于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的上午8∶00时至晚上20∶00时之间,有多少时间可供冲浪者进行运动?课后反思

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。