欢迎来到天天文库
浏览记录
ID:56671192
大小:119.50 KB
页数:4页
时间:2020-07-03
《高中数学 1.1.1 柱、锥、台、球的结构特征学案 新人教A版必修.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、河北省邯郸四中高一数学必修2学案:1.1.1柱、锥、台、球的结构特征学案一、预习目标:通过图形探究柱、锥、台、球的结构特征二、预习内容:阅读教材第2—6页内容,然后填空(1)多面体的概念:叫多面体,叫多面体的面,叫多面体的棱,叫多面体的顶点。①棱柱:两个面,其余各面都是,并且每相邻两个四边形的公共边都,这些面围成的几何体叫作棱柱②棱锥:有一个面是,其余各面都是的三角形,这些面围成的几何体叫作棱锥③棱台:用一个棱锥底面的平面去截棱锥,,叫作棱台。(2)旋转体的概念:叫旋转体,叫旋转体的轴。①圆柱:所围成的几何体叫做圆柱②
2、圆锥:所围成的几何体叫做圆锥③圆台:的部分叫圆台.④球的定义思考:(1)试分析多面体与旋转体有何区别(2)球面球体有何区别(3)圆与球有何区别三、提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中疑惑点疑惑内容 课内探究学案一、【学习目标】1.会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。2.能根据几何结构特征对空间物体进行分类。3.提高学生的观察能力;培养学生的空间想象能力和抽象括能力。学习重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。学习难点:柱
3、、锥、台、球的结构特征的概括。二、学习过程1、合作探究(1)有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明)(2)棱柱的任何两个平面都可以作为棱柱的底面吗?(3)圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?(4)棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?(5)绕直角三角形某一边的几何体一定是圆锥吗?2、典型例题例1.由棱柱的定义你能得到棱柱下列的几何性质吗?①侧棱都相等,侧面都是平行四边形;②两个底面与平行于底面的截面是全等的多边形;③过不相
4、邻的两条侧棱的截面是平行四边形.仿照棱柱,棱锥、棱台有哪些几何性质呢?例2:判断下列语句是否正确。⑴一个面是多边形,其余各面都是三角形的几何体是棱锥。⑵有两个面互相平行,其余各面都是梯形,则此几何体是棱柱。变式练习:(1)给出下列几种说法:①圆柱的底面是圆;②经过圆柱任意两条母线的截面是一个矩形;③连接圆柱上、下底面圆周上两点的线段是圆柱的母线;④圆柱任意两条母线互相平行。其中不正确的个数是()A1B2C3D4(2)下列说法①以直角三角形的一边为旋转轴,旋转而得的旋转体是圆锥;②以直角梯形一边为旋转轴,旋转而得的旋转体
5、是圆台;③圆锥、圆台底面都是圆;④分别以矩形长和宽所在直线为旋转轴旋转而得的两个圆柱是两个不同的圆柱。其中正确的个数是()A1B2C3D43、课堂检测:1.如图所示,在三棱台A′B′C′-ABC,截去三棱锥A′-ABC,则剩余部分是( ).A.三棱锥B.四棱锥C.三棱柱D.三棱台2.长方体ABCD-A1B1C1D1的棱长AA1=4,AB=3,AD=5,则从A点沿长方体表面到达C1点的最短距离为( ).A.4B.3C.D.83.给出下列命题:①圆柱的母线与它的轴可以不平行;②圆锥的顶点、圆锥底面圆周上任意一点及底面圆
6、的圆心三点的连线都可以构成直角三角形;③在圆台的上、下两底面圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线所在的直线是互相平行的.其中正确的是________.4.如图,这是一个正方体的表面展开图,若把它再折回成正方体后,有下列命题:①点H与点C重合;②点D与点M与点R重合;③点B与点Q重合;④点A与点S重合.其中正确命题的序号是________(注:把你认为正确的命题序号都填上).课后练习与提高一、选择题1、有两个面互相平行,其余各面都是梯形的多面体是A.棱柱B棱锥C棱台D可能是棱台,也可能不是,但
7、一定不是棱柱、棱锥2、下列说法正确的是①棱锥的侧面不一定是三角形;②棱锥的各侧棱长一定相等;③棱台的各侧棱的延长线交于一点;④用一平面去截棱锥,得到两个几何体,一个是棱锥,一个是棱台A①B②C③D④3、四棱柱有条体对角线A6B7C4D3二、填空题4、圆台有个面,这些面相交于条线5、以两条直角边为3cm和4cm的直角三角形旋转而形成的圆锥,其地面积为母线长为三、解答题6把一个圆锥截成圆台,已知圆台的上、下底面半径的比是1:4,母线长10cm。求圆锥的母线长。
此文档下载收益归作者所有