欢迎来到天天文库
浏览记录
ID:56636496
大小:2.02 MB
页数:17页
时间:2020-07-01
《小学数学精讲教案1_2_1_1 等差数列的认识与公式运用 教师版.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、等差数列的认识与公式运用教学目标本讲知识点属于计算板块的部分,难度较三年级学到的该内容稍大,最突出一点就是把公式用字母表示。要求学生熟记等差数列三个公式,并在公式中找出对应的各个量进行计算。知识点拨一、等差数列的定义⑴先介绍一下一些定义和表示方法定义:从第二项起,每一项都比前一项大(或小)一个常数(固定不变的数),这样的数列我们称它为等差数列.譬如:2、5、8、11、14、17、20、从第二项起,每一项比前一项大3,递增数列100、95、90、85、80、从第二项起,每一项比前一项小5,递减数列⑵首项:一个数列的第一项,通常用表
2、示末项:一个数列的最后一项,通常用表示,它也可表示数列的第项。项数:一个数列全部项的个数,通常用来表示;公差:等差数列每两项之间固定不变的差,通常用来表示;和:一个数列的前项的和,常用来表示.二、等差数列的相关公式(1)三个重要的公式①通项公式:递增数列:末项首项(项数)公差,递减数列:末项首项(项数)公差,回忆讲解这个公式的时候可以结合具体数列或者原来学的植树问题的思想,让学生明白末项其实就是首项加上(末项与首项的)间隔个公差个数,或者从找规律的情况入手.同时还可延伸出来这样一个有用的公式:,②项数公式:项数(末项首项)公差+
3、1由通项公式可以得到:(若);(若).找项数还有一种配组的方法,其中运用的思想我们是常常用到的.譬如:找找下面数列的项数:4、7、10、13、、40、43、46,分析:配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、、(46、47、48),注意等差是3,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48有项,每组3个数,所以共组,原数列有15组.当然还可以有其他的配组方法.③求和公式:和=(首项末项)项数÷2对于这个公式的得到可以从两个方面入手:(思路1) (
4、思路2)这道题目,还可以这样理解:即,和(2)中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数.譬如:①,题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于;②,题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于.例题精讲模块一、等差数列基本概念及公式的简单应用等差数列的基本认识【例1】下面的数列中,哪些是等差数列?若是,请指明公差,若不是,则说明理由。①6,10,14,18,22,…,98;②1,2,1,2,3,
5、4,5,6;③1,2,4,8,16,32,64;④9,8,7,6,5,4,3,2;⑤3,3,3,3,3,3,3,3;⑥1,0,1,0,l,0,1,0;【考点】等差数列的基本认识【难度】2星【题型】解答【解析】①是,公差d=4.②不是,因为数列的第3项减去第2项不等于数列的第2项减去第1项.③不是,因为4-2≠2-1.④是,公差d=l.⑤是,公差d=0.⑥不是,因为第1项减去第2项不等于第2项减去第3项。【答案】①是,公差d=4.②不是,因为数列的第3项减去第2项不等于数列的第2项减去第1项.③不是,因为4-2≠2-1.④是,公差
6、d=l.⑤是,公差d=0.⑥不是,因为第1项减去第2项不等于第2项减去第3项。【例2】小朋友们,你知道每一行数列各有多少个数字吗?(1)3、4、5、6、……、76、77、78(2)2、4、6、8、……、96、98、100(3)1、3、5、7、……、87、89、91(4)4、7、10、13、……、40、43、46【考点】等差数列的基本认识【难度】2星【题型】计算【解析】⑴连续的自然数列,3、4、5、6、7、8、9、10……,对应的是这个数列的第1、2、3、4、5、6、7、8、……,发现它的项数比对应数字小2,所以78是第76项,那
7、么这个数列就有76项.对于连续的自然数列,它们的项数是:末项-首项.⑵如果添上此数列所缺的一些奇数,就变成了1、2、3、4、5、6、7、8、……、95、96、97、98、99、100,可知这个数列是100项.让它们两两结合有:(1、2)、(3、4)、(5、6)、(7、8)、……、(95、96)、(97、98)、(99、100),奇数在每一组的第1位,偶数在第2位,而且每组里偶数比奇数大,同学们一看就知道,共有组,每组把偶数找出来,那么原数列就有50项了.这样的方法我们称为“添数配组法”.⑶利用“添数配组法”得:(1、2)、(3、
8、4)、(5、6)、(7、8)、……、(87、88)、(89、90)、(91、92),1~92有92项,每组2项,那么可以得到组,所以原数列有46项.⑷利用“添数配组法”得:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、……、(46、
此文档下载收益归作者所有