欢迎来到天天文库
浏览记录
ID:56581269
大小:300.50 KB
页数:11页
时间:2020-06-29
《2018高考数学一轮复习第8章平面解析几何第4节直线与圆圆与圆的位置关系教师用书文新人教A版.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第四节 直线与圆、圆与圆的位置关系————————————————————————————————[考纲传真] 1.能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系.2.能用直线和圆的方程解决一些简单的问题.3.初步了解用代数方法处理几何问题的思想.1.判断直线与圆的位置关系常用的两种方法(1)几何法:利用圆心到直线的距离d和圆半径r的大小关系:dr⇔相离.(2)代数法:联立直线l与圆C的方程,消去y(或x),得一元二次方程,计算判别式
2、Δ=b2-4ac,Δ>0⇔相交,Δ=0⇔相切,Δ<0⇔相离.2.圆与圆的位置关系设圆O1:(x-a1)2+(y-b1)2=r(r1>0),圆O2:(x-a2)2+(y-b2)2=r(r2>0).方法位置关系 几何法:圆心距d与r1,r2的关系代数法:联立两个圆的方程组成方程组的解的情况相离d>r1+r2无解外切d=r1+r2一组实数解相交
3、r2-r1
4、5、r1-r26、(r1≠r2)一组实数解内含0≤d<7、r1-r28、(r1≠r2)无解1.(思考辨析)判断下列结论的正9、误.(正确的打“√”,错误的打“×”)(1)“k=1”是“直线x-y+k=0与圆x2+y2=1相交”的必要不充分条件.( )(2)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.( )(3)如果两圆的圆心距小于两半径之和,则两圆相交.( )(4)若两圆相交,则两圆方程相减消去二次项后得到的二元一次方程是公共弦所在直线的方程.( )[解析] 依据直线与圆、圆与圆的位置关系,只有(4)正确.[答案] (1)× (2)× (3)× (4)√2.(教材改编)圆(x+2)2+y2=4与圆(x-2)210、+(y-1)2=9的位置关系为( )A.内切 B.相交C.外切D.相离B [两圆圆心分别为(-2,0),(2,1),半径分别为2和3,圆心距d==.∵3-211、+(y+1)2=4截得的弦长为__________. [圆心为(2,-1),半径r=2.圆心到直线的距离d==,所以弦长为2=2=.]5.(2016·全国卷Ⅰ)设直线y=x+2a与圆C:x2+y2-2ay-2=0相交于A,B两点,若12、AB13、=2,则圆C的面积为________.4π [圆C:x2+y2-2ay-2=0化为标准方程是C:x2+(y-a)2=a2+2,所以圆心C(0,a),半径r=.14、AB15、=2,点C到直线y=x+2a即x-y+2a=0的距离d=,由勾股定理得2+2=a2+2,解得a2=2,所16、以r=2,所以圆C的面积为π×22=4π.]直线与圆的位置关系 (1)(2017·豫南九校联考)直线l:mx-y+1-m=0与圆C:x2+(y-1)2=5的位置关系是( )【导学号:】A.相交 B.相切C.相离D.不确定(2)若点P(1,2)在以坐标原点为圆心的圆上,则该圆在点P处的切线方程为__________.(1)A (2)x+2y-5=0 [(1)法一:∵圆心(0,1)到直线l的距离d=<1<.故直线l与圆相交.法二:直线l:mx-y+1-m=0过定点(1,1),∵点(1,1)在圆C:x17、2+(y-1)2=5的内部,∴直线l与圆C相交.(2)∵以原点O为圆心的圆过点P(1,2),∴圆的方程为x2+y2=5.∵kOP=2,∴切线的斜率k=-.由点斜式可得切线方程为y-2=-(x-1),即x+2y-5=0.][规律方法] 1.(1)利用圆心到直线的距离可判断直线与圆的位置关系,也可利用直线的方程与圆的方程联立后得到的一元二次方程的判别式来判断直线与圆的位置关系;(2)注意灵活运用圆的几何性质,联系圆的几何特征,数形结合,简化运算.如“切线与过切点的半径垂直”等.2.与弦长有关的问题常用几何法,18、即利用弦心距、半径和弦长的一半构成直角三角形进行求解.[变式训练1] (1)(2017·山西忻州模拟)过点(3,1)作圆(x-1)2+y2=r2的切线有且只有一条,则该切线的方程为( )A.2x+y-5=0B.2x+y-7=0C.x-2y-5=0D.x-2y-7=0(2)(2016·全国卷Ⅲ)已知直线l:x-y+6=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点,则19、CD20、=________
5、r1-r2
6、(r1≠r2)一组实数解内含0≤d<
7、r1-r2
8、(r1≠r2)无解1.(思考辨析)判断下列结论的正
9、误.(正确的打“√”,错误的打“×”)(1)“k=1”是“直线x-y+k=0与圆x2+y2=1相交”的必要不充分条件.( )(2)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.( )(3)如果两圆的圆心距小于两半径之和,则两圆相交.( )(4)若两圆相交,则两圆方程相减消去二次项后得到的二元一次方程是公共弦所在直线的方程.( )[解析] 依据直线与圆、圆与圆的位置关系,只有(4)正确.[答案] (1)× (2)× (3)× (4)√2.(教材改编)圆(x+2)2+y2=4与圆(x-2)2
10、+(y-1)2=9的位置关系为( )A.内切 B.相交C.外切D.相离B [两圆圆心分别为(-2,0),(2,1),半径分别为2和3,圆心距d==.∵3-211、+(y+1)2=4截得的弦长为__________. [圆心为(2,-1),半径r=2.圆心到直线的距离d==,所以弦长为2=2=.]5.(2016·全国卷Ⅰ)设直线y=x+2a与圆C:x2+y2-2ay-2=0相交于A,B两点,若12、AB13、=2,则圆C的面积为________.4π [圆C:x2+y2-2ay-2=0化为标准方程是C:x2+(y-a)2=a2+2,所以圆心C(0,a),半径r=.14、AB15、=2,点C到直线y=x+2a即x-y+2a=0的距离d=,由勾股定理得2+2=a2+2,解得a2=2,所16、以r=2,所以圆C的面积为π×22=4π.]直线与圆的位置关系 (1)(2017·豫南九校联考)直线l:mx-y+1-m=0与圆C:x2+(y-1)2=5的位置关系是( )【导学号:】A.相交 B.相切C.相离D.不确定(2)若点P(1,2)在以坐标原点为圆心的圆上,则该圆在点P处的切线方程为__________.(1)A (2)x+2y-5=0 [(1)法一:∵圆心(0,1)到直线l的距离d=<1<.故直线l与圆相交.法二:直线l:mx-y+1-m=0过定点(1,1),∵点(1,1)在圆C:x17、2+(y-1)2=5的内部,∴直线l与圆C相交.(2)∵以原点O为圆心的圆过点P(1,2),∴圆的方程为x2+y2=5.∵kOP=2,∴切线的斜率k=-.由点斜式可得切线方程为y-2=-(x-1),即x+2y-5=0.][规律方法] 1.(1)利用圆心到直线的距离可判断直线与圆的位置关系,也可利用直线的方程与圆的方程联立后得到的一元二次方程的判别式来判断直线与圆的位置关系;(2)注意灵活运用圆的几何性质,联系圆的几何特征,数形结合,简化运算.如“切线与过切点的半径垂直”等.2.与弦长有关的问题常用几何法,18、即利用弦心距、半径和弦长的一半构成直角三角形进行求解.[变式训练1] (1)(2017·山西忻州模拟)过点(3,1)作圆(x-1)2+y2=r2的切线有且只有一条,则该切线的方程为( )A.2x+y-5=0B.2x+y-7=0C.x-2y-5=0D.x-2y-7=0(2)(2016·全国卷Ⅲ)已知直线l:x-y+6=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点,则19、CD20、=________
11、+(y+1)2=4截得的弦长为__________. [圆心为(2,-1),半径r=2.圆心到直线的距离d==,所以弦长为2=2=.]5.(2016·全国卷Ⅰ)设直线y=x+2a与圆C:x2+y2-2ay-2=0相交于A,B两点,若
12、AB
13、=2,则圆C的面积为________.4π [圆C:x2+y2-2ay-2=0化为标准方程是C:x2+(y-a)2=a2+2,所以圆心C(0,a),半径r=.
14、AB
15、=2,点C到直线y=x+2a即x-y+2a=0的距离d=,由勾股定理得2+2=a2+2,解得a2=2,所
16、以r=2,所以圆C的面积为π×22=4π.]直线与圆的位置关系 (1)(2017·豫南九校联考)直线l:mx-y+1-m=0与圆C:x2+(y-1)2=5的位置关系是( )【导学号:】A.相交 B.相切C.相离D.不确定(2)若点P(1,2)在以坐标原点为圆心的圆上,则该圆在点P处的切线方程为__________.(1)A (2)x+2y-5=0 [(1)法一:∵圆心(0,1)到直线l的距离d=<1<.故直线l与圆相交.法二:直线l:mx-y+1-m=0过定点(1,1),∵点(1,1)在圆C:x
17、2+(y-1)2=5的内部,∴直线l与圆C相交.(2)∵以原点O为圆心的圆过点P(1,2),∴圆的方程为x2+y2=5.∵kOP=2,∴切线的斜率k=-.由点斜式可得切线方程为y-2=-(x-1),即x+2y-5=0.][规律方法] 1.(1)利用圆心到直线的距离可判断直线与圆的位置关系,也可利用直线的方程与圆的方程联立后得到的一元二次方程的判别式来判断直线与圆的位置关系;(2)注意灵活运用圆的几何性质,联系圆的几何特征,数形结合,简化运算.如“切线与过切点的半径垂直”等.2.与弦长有关的问题常用几何法,
18、即利用弦心距、半径和弦长的一半构成直角三角形进行求解.[变式训练1] (1)(2017·山西忻州模拟)过点(3,1)作圆(x-1)2+y2=r2的切线有且只有一条,则该切线的方程为( )A.2x+y-5=0B.2x+y-7=0C.x-2y-5=0D.x-2y-7=0(2)(2016·全国卷Ⅲ)已知直线l:x-y+6=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点,则
19、CD
20、=________
此文档下载收益归作者所有