【江苏版】2020届高考数学文科一轮复习练习 第2章 基本初等函数、导数的应用 11 第11讲分层演练直击高考 .doc

【江苏版】2020届高考数学文科一轮复习练习 第2章 基本初等函数、导数的应用 11 第11讲分层演练直击高考 .doc

ID:56543703

大小:147.50 KB

页数:6页

时间:2020-06-27

【江苏版】2020届高考数学文科一轮复习练习 第2章 基本初等函数、导数的应用 11 第11讲分层演练直击高考 .doc_第1页
【江苏版】2020届高考数学文科一轮复习练习 第2章 基本初等函数、导数的应用 11 第11讲分层演练直击高考 .doc_第2页
【江苏版】2020届高考数学文科一轮复习练习 第2章 基本初等函数、导数的应用 11 第11讲分层演练直击高考 .doc_第3页
【江苏版】2020届高考数学文科一轮复习练习 第2章 基本初等函数、导数的应用 11 第11讲分层演练直击高考 .doc_第4页
【江苏版】2020届高考数学文科一轮复习练习 第2章 基本初等函数、导数的应用 11 第11讲分层演练直击高考 .doc_第5页
资源描述:

《【江苏版】2020届高考数学文科一轮复习练习 第2章 基本初等函数、导数的应用 11 第11讲分层演练直击高考 .doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、1.函数f(x)=x3-15x2-33x+6的单调减区间为________.[解析]由f(x)=x3-15x2-33x+6得f′(x)=3x2-30x-33,令f′(x)<0,即3(x-11)(x+1)<0,解得-1

2、)3.(2018·长春调研)已知函数f(x)=x3+ax+4,则“a>0”是“f(x)在R上单调递增”的________条件.[解析]f′(x)=x2+a,当a≥0时,f′(x)≥0恒成立,故“a>0”是“f(x)在R上单调递增”的充分不必要条件.[答案]充分不必要4.(2018·郑州第一次质量预测)已知定义在R上的函数f(x)满足f(-3)=f(5)=1,f′(x)为f(x)的导函数,且导函数y=f′(x)的图象如图所示,则不等式f(x)<1的解集是________.[解析]依题意得,当x>0时,f′(x)>0,f(x

3、)是增函数;当x<0时,f′(x)<0,f(x)是减函数.又f(-3)=f(5)=1,因此不等式f(x)<1的解集是(-3,5).[答案](-3,5)5.已知函数y=x3-3x+c的图象与x轴恰有两个公共点,则c=________.[解析]设f(x)=x3-3x+c,对f(x)求导可得,f′(x)=3x2-3,令f′(x)=0,可得x=±1,易知f(x)在(-∞,-1),(1,+∞)上单调递增,在(-1,1)上单调递减.若f(1)=1-3+c=0,可得c=2;若f(-1)=-1+3+c=0,可得c=-2.[答案]-2或2

4、6.若函数f(x)=x3-x2+ax+4恰在[-1,4]上单调递减,则实数a的值为________.[解析]因为f(x)=x3-x2+ax+4,所以f′(x)=x2-3x+a,又函数f(x)恰在[-1,4]上单调递减,所以-1,4是f′(x)=0的两根,所以a=(-1)×4=-4.[答案]-47.已知函数f(x)=-x2+4x-3lnx在[t,t+1]上不单调,则t的取值范围是________.[解析]由题意知f′(x)=-x+4-==-,由f′(x)=0得函数f(x)的两个极值点为1,3,则只要这两个极值点有一个在区间

5、(t,t+1)内,函数f(x)在区间[t,t+1]上就不单调,由t<1

6、0且在x=-1两侧的导数值为左负右正,所以x=-1是f(x)的极小值点;③对,④不对,由于f′(3)≠0.[答案]②③9.设函数f(x)=x2-9lnx在区间[a-1,a+1]上单调递减,则实数a的取值范围是________.[解析]因为f(x)=x2-9lnx,所以f′(x)=x-(x>0),当x-≤0时,有00且a+1≤3,解得1

7、y=x.(1)求a的值;(2)求函数f(x)的单调区间.解:(1)对f(x)求导得f′(x)=--(x>0),由f(x)在点(1,f(1))处的切线垂直于直线y=x,知f′(1)=--a=-2,解得a=.(2)由(1)知f(x)=+-lnx-,则f′(x)=(x>0).令f′(x)=0,解得x=-1或x=5.因为x=-1不在f(x)的定义域(0,+∞)内,故舍去.当x∈(0,5)时,f′(x)<0,故f(x)在(0,5)内为减函数;当x∈(5,+∞)时,f′(x)>0,故f(x)在(5,+∞)内为增函数.综上,f(x)的

8、单调增区间为(5,+∞),单调减区间为(0,5).11.(2018·沈阳质检)已知函数f(x)=lnx,g(x)=ax+b.(1)若f(x)与g(x)在x=1处相切,求g(x)的表达式;(2)若φ(x)=-f(x)在[1,+∞)上是减函数,求实数m的取值范围.[解](1)由已知得f′(x)=,所以f′(1)=1=a,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。