命题与证明(第三课时).ppt

命题与证明(第三课时).ppt

ID:56529438

大小:196.50 KB

页数:11页

时间:2020-06-27

命题与证明(第三课时).ppt_第1页
命题与证明(第三课时).ppt_第2页
命题与证明(第三课时).ppt_第3页
命题与证明(第三课时).ppt_第4页
命题与证明(第三课时).ppt_第5页
资源描述:

《命题与证明(第三课时).ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、§13.2命题与证明(第三课时)八年级数学组三角形的内角和等于180°ACB已知:△ABC,如图求证:∠A+∠B+∠C=180°三角形的内角和等于180°证明:如图所示延长BC到D点,并过点C作CE∥AB则∠1=∠A(两直线平行,内错角相等)∠2=∠B(两直线平行,同位角相等)∵B、C、D在同一条直线上(所作)∴∠1+∠2+∠ACB=180°∴∠A+∠B+∠ACB=∠1+∠2+∠ACB=180°(等量代换)即∠A+∠B+∠C=180°已知:△ABC,如图求证:∠A+∠B+∠C=180°BACED1C2什么是辅助线和运用时注意事项:辅助线:为了证明的需要,在原来图形上添画的线叫做辅助线

2、。注意事项:(1)用虚线(2)在书写证明过程中,首先应写明辅助线的画法(3)在图形中应标明所填字母或数字例1.补充完成下列证明,并填上推理的依据已知:如图,△ABC求证:∠A+∠B+∠C=180°证明:过点A作DE∥BC则∠DAB=__,()∠EAC=__,()∵∠DAB+∠BAC+∠EAC=____,(所作)∴∠B+∠BAC+∠C=______+______+_______,()=_____()ABC∠B两直线平行,内错角相等∠C两直线平行,内错角相等∠DAE∠DAB∠BAC∠EAC等量代换180°平角定义DE例2.补充完成下列证明已知:如图,△ABC求证:A+∠B+∠C=180°证

3、明:D是BC边上一点,过点D作DE//AB,DF//AC,分别交AC、AB于点E、F∵DE//AB(所作)∴∠A=∠4,∠B=∠3(两直线平行,同位角相等)∵DF//AC(已知)∴∠1=∠C(两直线平行,同位角相等)∠2=∠4(两直线平行,内错角相等)∴∠A=∠2(等量代换)∴∠A+∠B+∠C=∠1+∠2+∠3(等量代换)=180°(平角的定义)ABCDFE1234小结:文字表述的几何命题证明的一般步骤(1)分清命题的条件和结论,根据题意画出图形;(2)结合图形,将命题的条件与结论写成已知、求证的形式;(3)分析思考,寻找由已知条件推出结论的途径,并写出证明过程。推论1:直角三角形的两锐角

4、互余。推论2:有两角互余的三角形是直角三角形。注:由基本事实、定理直接得出的真命题叫做推论练习1.如图所示,已知AB//CD,∠AEC=90°求:∠BAE+∠ECD的度数方法一:所图所示,连接AC∵AB//CD(已知)小试牛刀ABECD解:→∴∠BAC+∠DCA=180°(两直线平行,同旁内角互补)在△AEC中∠AEC=90°(已知)∴∠EAC+∠ECA=90°(三角形内角和推论1)∴∠BAE+∠ECD=∠BAC+∠EAC+∠DCA+∠ECA=180°+90°=270°(等量代换)方法二:如图所示,过E点作EF//AB则∠A+∠AEF=180°(两直线平行,同旁内角互补)∵AB//CD(已知

5、)∴EF//CD(如果两条直线都平行于第三条直线,那么这两条直线平行)∴∠C+∠CEF=180°(两直线平行,同旁内角互补)∵∠AEC=∠AEF+∠CEF=90°(已知)∴∠BAE+∠ECD=∠A+∠AEF+∠C+∠CEF-∠AEC=180°+180°-90°=270°(等量代换)AEBCDF再见!

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。