欢迎来到天天文库
浏览记录
ID:56528665
大小:357.50 KB
页数:16页
时间:2020-06-27
《二次函数yax2 c的图象和性质.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、26.2.2二次函数y=ax2+c的图像1.二次函数y=x2的图象是____,它的开口向_____,顶点坐标是_____;对称轴是______,在对称轴的左侧,y随x的增大而______,在对称轴的右侧,y随x的增大而______,函数y=x2当x=______时,y有最______值,其最______值是______。课前复习:(1)抛物线y=x2+1,y=x2-1的开口方向、对称轴、顶点各是什么?探究抛物线y=x2+1:开口向上,顶点为(0,1).对称轴是y轴,抛物线y=x2-1:开口向上,顶点为(0,-1).对称轴是y轴,12345x12345678910yo-1-2
2、-3-4-5y=x2+1y=x2-1●●(2)抛物线y=x2+1,y=x2-1与抛物线y=x2的异同点:12345x12345678910yo-1-2-3-4-5y=x2+1抛物线y=x2抛物线y=x2-1向上平移1个单位抛物线y=x2向下平移1个单位y=x2-1y=x2抛物线y=x2+1相同点:①形状大小相同②开口方向相同③对称轴相同不同点:顶点的位置不同,抛物线的位置也不同.●●●总结抛物线y=ax2与y=ax2±c之间的关系是:形状大小相同,开口方向相同,对称轴相同,而顶点位置和抛物线的位置不同.抛物线之间的平移规律:抛物线y=ax2抛物线y=ax2-c向上平移c个单
3、位抛物线y=ax2向下平移c个单位抛物线y=ax2+c想一想抛物线y=ax2+k中的a决定什么?怎样决定的?k决定什么?它的对称轴是什么?顶点坐标怎样表示?y=ax2+ka>0a<0图象开口对称性顶点增减性二次函数y=ax2+k的性质开口向上开口向下a的绝对值越大,开口越小关于y轴对称顶点是最低点顶点是最高点在对称轴左侧递减在对称轴右侧递增在对称轴左侧递增在对称轴右侧递减(0,k)(1)抛物线y=ax2+c与y=-5x2的形状大小,开口方向都相同,且其顶点坐标是(0,3),则其表达式为,它是由抛物线y=-5x2向平移个单位得到的.例题y=-5x2+3上3(2)抛物线y=ax
4、2+c与y=3x2的形状相同,且其顶点坐标是(0,1),则其表达式为,y=3x2+1或y=-3x2+1练习:1、把抛物线y=-2x2向上平移3个单位长度,得到的抛物线是2、把抛物线y=-x2-2向下平移5个单位,得到的抛物线是3、一条抛物线向上平移2.5个单位后得到抛物线y=0.5x2,原抛物线是4、分别说下列抛物线的开口方向,对称轴、顶点坐标、最大值或最小值各是什么及增减性如何?。(1)y=-x2-3(2)y=1.5x2+7y=-2x2+3y=-x2-7y=0.5x2-2.55.函数y=3x2+5与y=3x2的图象的不同之处是()A.对称轴B.开口方向C.顶点D.形状6.
5、已知抛物线y=2x2–1上有两点(x1,y1),(x1,y1)且x1<x2<0,则y1y2(填“<”或“>”)7.已知一个二次函数图像的顶点在y轴上,并且离原点1个单位,图像经过点(–1,0),求该二次函数解析式。8.已知抛物线,把它向下平移,得到的抛物线与x轴交于A、B两点,与y轴交于C点,若△ABC是直角三角形,那么原抛物线应向下平移几个单位?C<大显身手(1)已知二次函数y=3x2+4,点A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4)在其图象上,且x26、x27、>8、x19、,10、x311、>12、x413、,则()x1x2x3x4y114、y4y3y2A.y1>y2>y3>y4B.y2>y1>y3>y4C.y3>y2>y4>y1D.y4>y2>y3>y1B(2)已知二次函数y=ax2+c,当x取x1,x2(x1≠x2,x1,x2分别是A,B两点的横坐标)时,函数值相等,则当x取x1+x2时,函数值为()A.a+cB.a-cC.–cD.cD大显身手3、在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致是如图中的()B大显身手4.函数y=ax2-a与y=在同一直角坐标系中的图象可能是()A大显身手5、按下列要求求出二次函数的解析式:(1)已知抛物线y=ax2+c经过点(-3,2)(0,-115、)求该抛物线线的解析式。(2)形状与y=-2x2+3的图象形状相同,但开口方向不同,顶点坐标是(0,1)的抛物线解析式。(3)对称轴是y轴,顶点纵坐标是-3,且经过(1,2)的点的解析式,做一做:谈谈你的收获小结:
6、x2
7、>
8、x1
9、,
10、x3
11、>
12、x4
13、,则()x1x2x3x4y1
14、y4y3y2A.y1>y2>y3>y4B.y2>y1>y3>y4C.y3>y2>y4>y1D.y4>y2>y3>y1B(2)已知二次函数y=ax2+c,当x取x1,x2(x1≠x2,x1,x2分别是A,B两点的横坐标)时,函数值相等,则当x取x1+x2时,函数值为()A.a+cB.a-cC.–cD.cD大显身手3、在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致是如图中的()B大显身手4.函数y=ax2-a与y=在同一直角坐标系中的图象可能是()A大显身手5、按下列要求求出二次函数的解析式:(1)已知抛物线y=ax2+c经过点(-3,2)(0,-1
15、)求该抛物线线的解析式。(2)形状与y=-2x2+3的图象形状相同,但开口方向不同,顶点坐标是(0,1)的抛物线解析式。(3)对称轴是y轴,顶点纵坐标是-3,且经过(1,2)的点的解析式,做一做:谈谈你的收获小结:
此文档下载收益归作者所有