【江苏高考】2020版数学理科考前三个月抢分必做 压轴大题突破练 一 含解析.docx

【江苏高考】2020版数学理科考前三个月抢分必做 压轴大题突破练 一 含解析.docx

ID:56519493

大小:31.61 KB

页数:4页

时间:2020-06-26

【江苏高考】2020版数学理科考前三个月抢分必做 压轴大题突破练 一 含解析.docx_第1页
【江苏高考】2020版数学理科考前三个月抢分必做 压轴大题突破练 一 含解析.docx_第2页
【江苏高考】2020版数学理科考前三个月抢分必做 压轴大题突破练 一 含解析.docx_第3页
【江苏高考】2020版数学理科考前三个月抢分必做 压轴大题突破练 一 含解析.docx_第4页
资源描述:

《【江苏高考】2020版数学理科考前三个月抢分必做 压轴大题突破练 一 含解析.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、压轴大题突破练压轴大题突破练(一) 直线与圆锥曲线(1)1.在平面直角坐标系中,已知点A(1,0),点B在直线l:x=-1上运动,过点B与l垂直的直线和线段AB的垂直平分线相交于点M.(1)求动点M的轨迹E的方程;(2)过(1)中轨迹E上的点P(1,2)作两条直线分别与轨迹E相交于C(x1,y1),D(x2,y2)两点.试探究:当直线PC,PD的斜率存在且倾斜角互补时,直线CD的斜率是否为定值?若是,求出这个定值;若不是,请说明理由.解 (1)依题意,得MA=MB.∴动点M的轨迹E是以A(1,0)为焦

2、点,直线l:x=-1为准线的抛物线,∴动点M的轨迹E的方程为y2=4x.(2)∵P(1,2),C(x1,y1),D(x2,y2)在抛物线y2=4x上,∴由①-②得,(y1+y2)(y1-y2)=4(x1-x2),∴直线CD的斜率为kCD==.③设直线PC的斜率为k,则PD的斜率为-k,则直线PC方程为y-2=k(x-1),由得ky2-4y-4k+8=0.由2+y1=,求得y1=-2,同理可求得y2=--2.∴kCD===-1,∴直线CD的斜率为定值-1.2.(2016·课标全国丙)已知抛物线C:y2=

3、2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B两点,交C的准线于P,Q两点.(1)若F在线段AB上,R是PQ的中点,证明AR∥FQ;(2)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.由题意知F,设l1:y=a,l2:y=b,则ab≠0,且A,B,P,Q,R.记过A,B两点的直线为l,则l的方程为2x-(a+b)y+ab=0.(1)证明 由于F在线段AB上,故1+ab=0.记AR的斜率为k1,FQ的斜率为k2,则k1====-=-b==k2.所以AR∥FQ.(2)解 设

4、过AB的直线为l,设l与x轴的交点为D(x1,0),则S△ABF=

5、b-a

6、·FD=

7、b-a

8、,S△PQF=.由题意可得

9、b-a

10、=,所以x1=1,x1=0(舍去).设满足条件的AB的中点为E(x,y).当AB与x轴不垂直时,由kAB=kDE可得=(x≠1).而=y,所以y2=x-1(x≠1).当AB与x轴垂直时,E与D重合,此时E点坐标为(1,0),满足方程y2=x-1.所以所求轨迹方程为y2=x-1.3.椭圆E:+=1(a>b>0)的左焦点为F1,右焦点为F2,离心率e=.设动直线l:y=kx+m

11、与椭圆E相切于点P且交直线x=2于点N,△PF1F2的周长为2(+1).(1)求椭圆E的方程;(2)求两焦点F1、F2到切线l的距离之积;(3)求证:以PN为直径的圆恒过点F2.(1)解 设F1(-c,0),F2(c,0),则解得a=,c=1.∴b2=a2-c2=1,∴椭圆E的方程为+y2=1.(2)解 由⇒(1+2k2)x2+4kmx+2(m2-1)=0.设直线l与椭圆E相切于点P(x0,y0),则Δ=0,化简2k2+1=m2,焦点F1,F2到直线l的距离d1,d2分别为d1=,d2=,则d1·d2

12、===1.(3)证明 ∵x0=-=-,∴y0=kx0+m=-+m==,∴P(-,).又联立y=kx+m与x=2,得到N(2,2k+m),=(1+,-),=(1,2k+m).∴·=(1+,-)·(1,2k+m)=1+-(2k+m)=1+--1=0.∴⊥,∴以PN为直径的圆恒过点F2.4.已知椭圆C:+=1(a>b>0)的短轴长为2,离心率为,过点M(2,0)的直线l与椭圆C相交于A,B两点,O为坐标原点.(1)求椭圆C的方程;(2)求·的取值范围;(3)若B点关于x轴的对称点是N,证明:直线AN恒过一定

13、点.(1)解 由题意知b=1,e==,得a2=2c2=2a2-2b2,故a2=2.故所求椭圆C的方程为+y2=1.(2)解 设l:y=k(x-2),与椭圆C的方程联立,消去y得(1+2k2)x2-8k2x+8k2-2=0.由Δ>0得0≤k2<.设A(x1,y1),B(x2,y2),则x1+x2=,x1x2=,∴·=x1x2+y1y2=x1x2+k2(x1-2)(x2-2)=(1+k2)x1x2-2k2(x1+x2)+4k2==5-.∵0≤k2<,∴<≤7,故所求范围是[-2,).(3)证明 由对称性可

14、知N(x2,-y2),定点在x轴上,直线AN:y-y1=(x-x1).令y=0得:x=x1-=====1,故直线AN恒过定点(1,0).

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。