七年级数学下册 第7章 平面直角坐标系 7.1.2 平面直角坐标系教案 (新版)新人教版.doc

七年级数学下册 第7章 平面直角坐标系 7.1.2 平面直角坐标系教案 (新版)新人教版.doc

ID:56493594

大小:40.00 KB

页数:4页

时间:2020-06-25

七年级数学下册 第7章 平面直角坐标系 7.1.2 平面直角坐标系教案 (新版)新人教版.doc_第1页
七年级数学下册 第7章 平面直角坐标系 7.1.2 平面直角坐标系教案 (新版)新人教版.doc_第2页
七年级数学下册 第7章 平面直角坐标系 7.1.2 平面直角坐标系教案 (新版)新人教版.doc_第3页
七年级数学下册 第7章 平面直角坐标系 7.1.2 平面直角坐标系教案 (新版)新人教版.doc_第4页
资源描述:

《七年级数学下册 第7章 平面直角坐标系 7.1.2 平面直角坐标系教案 (新版)新人教版.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、7.1第二课时平面直角坐标系课型新授单位主备人教学目标:1.知识与技能:(1)理解平面直角坐标系以及横轴、纵轴、原点、坐标等概念;能在给定的直角坐标系中,由点的位置写出它的坐标(2)能说出平面直角坐标系,以及横轴、纵轴、原点、坐标的概念。会画平面直角坐标并能在给定的平面直角坐标系中由点的位置写出它的坐标,以及能根据坐标描出点的位置2.过程与方法:培养学生操作、观察、分析、猜测和概括等能力,同时渗透数形结合的思想3.情感、价值观:养成学生积极主动的学习态度和自主学习的方式重点、难点:教学重点:理解平面直角坐标系以及横轴、纵轴、原点、坐标等概念;

2、教学难点:能在给定的直角坐标系中,由点的位置写出它的坐标教学准备:PPT课件和微课等。教学过程一、创设情景、引入新课我们已经学过数轴,知道数轴上的点与实数一一对应,在建立了数轴之后,我们就可以确定直线上点的位置,如图.数轴上的点可以用一个数来表示,这个数叫做这个点在数轴上的坐标.例如点A在数轴上的坐标为-3,点B在数轴上的坐标为2。反过来,知道数轴上一个点的坐标,这个点在数轴上的位置也就确定了那么,如何确定平面内点的位置呢?二、自主学习、合作探究法国数学家笛卡儿----法国数学家、解析几何的创始人笛卡尔受到了经纬度的启发,引入坐标系,用代数方

3、法解决几何问题。探究点一:认识平面直角坐标系与平面内点的坐标课件展示平面直角坐标系与平面内的点在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系(简称直角坐标系)。正方向:数轴向右与向上的方向坐标轴:x轴或横轴:水平的数轴.y轴或纵轴:竖直的数轴.原点:两条数轴的公共原点O.平面上两条互相垂直,原点重合的两条数轴组成平面直角坐标系,水平的数轴叫x轴(横轴),取向右为正方向,竖直的数轴叫y轴(纵轴),取向上为正方向。两坐标轴的交点是平面直角坐标系的原点。象限:两条坐标轴把平面分成如图所示的四个部分注意:坐标轴上的点不属于任何象限。巩固练

4、习如图所示,点A、点B所在的位置是(  )A.第二象限,y轴上B.第四象限,y轴上C.第二象限,x轴上D.第四象限,x轴上解析:根据坐标平面的四个象限来判定.点A在第四象限,点B在x轴正半轴上.故选D.方法总结:两坐标轴上的点不属于任何一个象限,象限是按逆时针方向排列的.探究二:各象限内点的坐标的符号特征:课件展示观察:各象限点坐标符号特点。注意:坐标轴上的点不属于任何象限。总结各象限内点的坐标的符号特征:(+,+)表示第一象限内的点;(-,+)表示第二象限内的点;(-,-)表示第三象限内的点;(+,-)表示第四象限内的点.平面直角坐标系中有

5、点M(a,b).(1)当a>0,b<0时,点M位于第几象限?(2)当ab>0时,点M位于第几象限?(3)当a为任意有理数,且b<0时,点M位于第几象限?解析:(1)横坐标为正,纵坐标为负的点在第四象限;(2)由ab>0知a,b同号,则点M在第一或第三象限;(3)由a为任意有理数,b<0,则点M在x轴下方.解:(1)点M在第四象限;(2)可能在第一象限(a>0,b>0)或者在第三象限(a<0,b<0);(3)可能在第三象限(a<0,b<0)或者第四象限(a>0,b<0)或者y轴负半轴上探究三:坐标轴上的点有何特征?在y轴上的点,横坐标等于0.在

6、x轴上的点,纵坐标等于0.探究四:在平面直角坐标系内描点课件展示在平面直角坐标系内描点探究五:点的位置与坐标的关系关于x轴对称的点的横坐标相同,纵坐标互为相反数关于y轴对称的点的纵坐标相同,横坐标互为相反数关于原点对称的点的横坐标、纵坐标都互为相反数三、释疑解难、精讲点拨在坐标系中求图形的面积如图所示的直角坐标系中,四边形ABCD各顶点的坐标分别是A(0,0),B(9,0),C(7,5),D(2,7).试确定这个四边形的面积.解析:由于四边形不是规则的四边形,所以可以考虑把它分成三角形或规则的四边形来解决.解:分别过点D、C向x轴作垂线,垂足

7、分别为点E、F,则四边形ABCD被分割为△AED、△BCF及梯形CDEF.由各点的坐标可得AE=2,DE=7,EF=5,FB=2,CF=5.∴S四边形ABCD=S△AED+S梯形CDEF+S△BCF=×2×7+×(7+5)×5+×5×2=7+30+5=42.方法总结:在直角坐标系中求不规则多边形的面积,一般采用割补法,将其割补为规则图形,从而求出面积.四、巩固训练、深化提高1.在平面直角坐标系内,下列各点在第四象限的是()A.(2,1)B.(-2,1)C.(-3,-5)D.(3,-5)2.已知坐标平面内点A(m,n)在第四象限,那么点B(n,

8、m)在()A.第一象限B.第二象限.C.第三象限D.第四象限3.在y轴上的点的横坐标是(),在x轴上的点的纵坐标是().4.点A(2,-3)关于x轴对称的点的坐标是

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。