欢迎来到天天文库
浏览记录
ID:56468208
大小:212.00 KB
页数:38页
时间:2020-06-19
《固体物理基本概念(考试专用).ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、固体物理学期末复习(一)基本概念第一章晶体结构晶体-----内部组成粒子(原子、离子或原子团)在微观上作有规则的周期性重复排列构成的固体。晶体的通性------所有晶体具有的共通性质,如自限性、最小内能性、锐熔性、均匀性和各向异性、对称性、解理性等。单晶体和多晶体-----单晶体的内部粒子的周期性排列贯彻始终;多晶体由许多小单晶无规堆砌而成。基元、格点和空间点阵------基元是晶体结构的基本单元,格点是基元的代表点,空间点阵是晶体结构中等同点(格点)的集合,其类型代表等同点的排列方式。原胞、WS
2、原胞-----在晶体结构中只考虑周期性时所选取的最小重复单元称为原胞;WS原胞即Wigner-Seitz原胞,是一种对称性原胞。晶胞-----在晶体结构中不仅考虑周期性,同时能反映晶体对称性时所选取的最小重复单元称为晶胞。原胞基矢和轴矢----原胞基矢是原胞中相交于一点的三个独立方向的最小重复矢量;晶胞基矢是晶胞中相交于一点的三个独立方向的最小重复矢量,通常以晶胞基矢构成晶体坐标系。布喇菲格子(单式格子)和复式格子------晶体结构中全同原子构成的晶格称为布喇菲格子或单式格子,由两种或两种以上的原子
3、构成的晶格称为复式格子。简单格子和复杂格子(有心化格子)------一个晶胞只含一个格点则称为简单格子,此时格点位于晶胞的八个顶角处;晶胞中含不只一个格点时称为复杂格子,其格点除了位于晶胞的八个顶角处外,还可以位于晶胞的体心(体心格子)、一对面的中心(底心格子)和所有面的中心(面心格子)。密堆积和配位数-----晶体组成原子视为等径原子时所采取的最紧密堆积方式称为密堆积,晶体中只有六角密积与立方密积两种密堆积方式。晶体中每个原子周围的最近邻原子数称为配位数。由于晶格周期性限制,晶体中的配位数只能取:1
4、2,8,6、4、3(二维)和2(一维)。晶列、晶向(指数)和等效晶列-----晶列是晶体结构中包括无数格点的直线,晶列上格点周期性重复排列,相互平行的晶列上格点排列周期相同,一簇相互平行的晶列可将晶体中所有格点包括无遗;晶向指晶列的方向,晶向指数是晶列的方向余旋的互质整数比,表为[uvw];等效晶列是晶体结构中由对称性相联系的一组晶列,表为。晶面、晶面指数和等效晶面----晶面是晶体结构中包括无数格点的平面,相互平行的晶面的面间距相等,一簇相互平行的晶面可将晶体中所有格点包括无遗;晶面指数是
5、晶面法线方向的方向余旋的互质整数比,表为(hkl);等效晶面是晶体结构中由对称性相联系的一组晶面,表为{hkl}。密勒指数特指晶胞坐标系中的晶面指数。晶体衍射----晶体的组成粒子呈周期性规则排列,晶格周期和X-射线波长同数量级,因此光入射到晶体上会产生衍射现象,称为X-射线晶体衍射。劳厄方程和布拉格公式----晶体衍射时产生衍射极大的条件。劳厄将晶体X-射线衍射看作是晶体中原子核外的电子与入射X-射线的相互作用,而布拉格父子则将晶体X-射线看作是晶面对X-射线的选择性反射,分别得到衍射加强条件为劳厄
6、方程和布拉格公式,两者其实是等价的。劳厄方程布拉格公式几何结构因子----晶胞中所有原子对X-射线的散射振幅与一个电子对X-射线的散射振幅之比,几何结构因子是一种相对振幅。消光规律----因晶胞中原子的几何排列所引起的衍射线消失的规律,称为结构消光。倒格子------晶格经傅里叶变换所得到的几何格子。倒格子基矢定义:1)2)布里渊区-----布里渊区是倒空间中由倒格矢的中垂面(二维为中垂线)所围成的区域,按序号由倒空间的原点逐步向外扩展,每个布区的体积(或面积)等于倒格子原胞的体积(或面积)。第一布里
7、渊区(中心布区或简约布区)是倒格矢的中垂面(线)所围成的最小区域,是倒空间中的对称性原胞。第n布区是跨越第(n-1)布区的边界所能到达的,由倒格矢的中垂面(线)所围成的一些分离区域,且各区域体积(面积)之和等于倒格子原胞体积(面积)。晶体对称性----晶体的外形或物理性质在不同方向上有规律地重复的现象。对称操作----使对称图形复原的动作或变换(保持晶体上任意两点间距离不变的变换——正交变换)。对称要素---施行对称操作时所凭借的几何元素。描述晶体宏观对称性的独立基本对称要素只有八个:1,2,3,6,
8、I,m和。对称操作数----晶体投影图中由对称性联系起来的等同点的数目,其值体现了对称性的高低。群的概念:群是一些元素的集合,记为G={E,A,B,C,……},群元素满足下述群的乘法定则:1)闭合性:;2)存在单位元素E:对任意,有AE=EA=A;3)存在逆元素对任意,存在,有:4)结合律:A(BC)=(AB)C对称群----对称要素和对称操作的集合构成对称群。点群----晶体中相交于一点的对称要素及相应的对称操作的集合,晶体共有32种点群,又称32种宏
此文档下载收益归作者所有