B样条曲线曲面.ppt

B样条曲线曲面.ppt

ID:56430257

大小:290.00 KB

页数:40页

时间:2020-06-18

B样条曲线曲面.ppt_第1页
B样条曲线曲面.ppt_第2页
B样条曲线曲面.ppt_第3页
B样条曲线曲面.ppt_第4页
B样条曲线曲面.ppt_第5页
资源描述:

《B样条曲线曲面.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、3.1.2B样条曲线和曲面在我们工程中应用的拟合曲线,一般地说可以分为两种类型:一种是最终生成的曲线通过所有的给定型值点,比如抛物样条曲线和三次参数样条曲线等,这样的曲线适用于插值放样;另一种曲线是,它的最终结果并不一定通过给定的型值点,而只是比较好地接近这些点,这类曲线(或曲面)比较适合于外形设计。因为在外形设计中(比如汽车、船舶),初始给出的数据点往往并不精确;并且有的地方在外观上考虑是主要的,因为不是功能的要求,所以为了美观而宁可放弃个别数据点。因此不须最终生成的曲线都通过这些数据点。另一方面,考虑到在进行外形设计时应易于实时局部

2、修改,反映直观,以便于设计者交互操作。第一类曲线在这方面就不能适应。法国的Bezier为此提出了一种新的参数曲线表示方法,因此称为Bezier曲线。后来又经过Gordon、Forrest和Riesenfeld等人的拓广、发展,提出了B样条曲线。这两种曲线都因能较好地适用于外形设计的特殊要求而获得了广泛的应用。一、Bezier曲线Bezier曲线的形状是通过一组多边折线(特征多边形)的各顶点唯一地定义出来的。在这组顶点中:(1)只有第一个顶点和最后一个顶点在曲线上;(2)其余的顶点则用于定义曲线的导数、阶次和形状;(3)第一条边和最后一条

3、边则表示了曲线在两端点处的切线方向。1.Bezier曲线的数学表达式Bezier曲线是由多项式混合函数推导出来的,通常n+1个顶点定义一个n次多项式。其数学表达式为:(0≤t≤1)式中:Pi:为各顶点的位置向量Bi,n(t):为伯恩斯坦基函数伯恩斯坦基函数的表达式为:假如规定:0=1,0!=1,则t=0: i=0,Bi,n(t)=1i0,Bi,n(t)=0P(0)=P0t=1: i=n,Bi,n(t)=1in,Bi,n(t)=0P(1)=Pn所以说,“只有第一个顶点和最后一个顶点在曲线上”。即Bezier曲线只通过多边折线的起

4、点和终点。下面我们通过对基函数求导,来分析两端切矢的情况。得:讨论:t=0:i=0:Bi-1,n-1(t)=0;Bi,n-1(t)=1。i=1:Bi-1,n-1(t)=1;Bi,n-1(t)=0。i2:Bi-1,n-1(t)=0;Bi,n-1(t)=0。(均出现0的非0次幂)t=0同理可得,当t=1时这两个式子说明:Bezier曲线在两端点处的切矢方向与特征多边形的第一条边和最后一条边相一致。2.二次和三次Bezier曲线(1)三个顶点:P0,P1,P2可定义一条二次(n=2)Bezier曲线:其相应的混合函数为:所以,根据式:二次

5、Bezier曲线的表达形式为:P(t)=(1-t)2P0+2t(1-t)P1+t2P2(0≤t≤1)根据Bezier曲线的总体性质,可讨论二次Bezier曲线的性质:P(t)=(1-t)2P0+2t(1-t)P1+t2P2P’(t)=2(t-1)P0+2(1-2t)P1+2tP2P(1/2)=1/2[P1+1/2(P0+P2)]P(0)=2(P1-P0)P(1)=2(P2-P1)P(1/2)=P2-P0二次Bezier曲线是一条抛物线(2) 四个顶点P0、P1、P2、P3可定义一条三次Bezier曲线:***

6、二、B样条曲线1.从Bezier曲线到B样条曲线(1)Bezier曲线在应用中的不足:缺乏灵活性一旦确定了特征多边形的顶点数(m个),也就决定了曲线的阶次(m-1次),无法更改;控制性差当顶点数较多时,曲线的阶次将较高,此时,特征多边形对曲线形状的控制将明显减弱;不易修改由曲线的混合函数可看出,其值在开区间(0,1)内均不为零。因此,所定义之曲线在(0

7、Bezier曲线,就外形设计的需求出发,希望新的曲线要:易于进行局部修改;更逼近特征多边形;是低阶次曲线。于是,用n次B样条基函数替换了伯恩斯坦基函数,构造了称之为B样条曲线的新型曲线。2.B样条曲线的数学表达式B样条曲线的数学表达式为:在上式中,0≤t≤1;i=0,1,2,…,m所以可以看出:B样条曲线是分段定义的。如果给定m+n+1个顶点Pi(i=0,1,2,…,m+n),则可定义m+1段n次的参数曲线。在以上表达式中:Fk,n(t)为n次B样条基函数,也称B样条分段混合函数。其表达式为:式中:0≤t≤1k=0,1,2,…,n连接全

8、部曲线段所组成的整条曲线称为n次B样条曲线。依次用线段连接点Pi+k(k=0,1,…,n)所组成的多边折线称为B样条曲线在第i段的B特征多边形。3.二次B样条曲线在二次B样条曲线中,n=2,k=0,1,2故

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。