七年级数学下册 10.1《相交线》教案2 (新版)沪科版.doc

七年级数学下册 10.1《相交线》教案2 (新版)沪科版.doc

ID:56410221

大小:60.00 KB

页数:2页

时间:2020-06-23

七年级数学下册 10.1《相交线》教案2 (新版)沪科版.doc_第1页
七年级数学下册 10.1《相交线》教案2 (新版)沪科版.doc_第2页
资源描述:

《七年级数学下册 10.1《相交线》教案2 (新版)沪科版.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、《相交线》教学目标:理解相交线的定义、对顶角的定义和性质,理解垂线的定义、点到直线的距离的定义,掌握垂线的性质;知识要点:(一)相交线1.相交线的定义在同一平面内,如果两条直线只有一个公共点,那么这两条直线叫做相交线,公共点称为两条直线的交点.如图1所示,直线AB与直线CD相交于点O.图1图2图32.对顶角的定义若一个角的两条边分别是另一个角的两条边的反向延长线,那么这两个角叫做对顶角.如图2所示,∠1与∠3、∠2与∠4都是对顶角.注意:两个角互为对顶角的特征是:(1)角的顶点公共;(2)角的两边互为反向延长线;(3)两条相交

2、线形成2对对顶角.3.对顶角的性质对顶角相等.(二)垂线1.垂线的定义当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.图4如图4所示,直线AB与CD互相垂直,垂足为点O,则记作AB⊥CD于点O.其中“⊥”是“垂直”的记号;是图形中“垂直”(直角)的标记.注意:垂线的定义有以下两层含义:(1)∵AB⊥CD(已知)(2)∵∠1=90°(已知)∴∠1=90°(垂线的定义)∴AB⊥CD(垂线的定义)2.垂线的性质(1)性质1:在同一平面内,经过直线外或直线上

3、一点,有且只有一条直线与已知直线垂直,即过一点有且只有一条直线与已知直线垂直.(2)性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短.即垂线段最短.3.点到直线的距离直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.图5图6如图5所示,m的垂线段PB的长度叫做点P到直线m的距离.4.垂线的画法(工具:三角板或量角器)5.画已知线段或射线的垂线.(1)垂足在线段或射线上.(2)垂足在线段的延长线或射线的反向延长线上.范例:判断下列语句是否正确,如果是错误的,说明理由.(1)过直线外一点画直线的垂线,垂线的长度叫做

4、这个点到这条直线的距离;(2)从直线外一点到直线的垂线段,叫做这个点到这条直线的距离;(3)两条直线相交,若有一组对顶角互补,则这两条直线互相垂直.分析:本题考查学生对基本概念的理解是否清晰.(1)、(2)都是对点到直线的距离的描述,由“直线外一点到这条直线的垂线段的长度,叫做点到直线的距离”可判断(1)、(2)都是错的;由对顶角相等且互补易知,这两个角都是90°,故(3)正确;同一平面内,两条直线的位置关系是相交或平行,必须强调“在同一平面内”.解答:(1)这种说法是错误的.因为垂线是直线,它的长度不能度量,应改为“垂线段的

5、长度叫做点到直线的距离”.(2)这种说法是错误的.因为“点到直线的距离”不是指点到直线的垂线段的本身,而是指垂线段的长度.(3)这种说法是正确的.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。