欢迎来到天天文库
浏览记录
ID:56405058
大小:245.00 KB
页数:14页
时间:2020-06-23
《2019届高考数学大一轮复习 第十三章 系列4选讲 13.1 坐标系与参数方程 第2课时 参数方程学案 文 北师大版.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第2课时 参数方程最新考纲考情考向分析1.了解参数方程,了解参数的意义.2.能选择适当的参数写出直线、圆和椭圆的参数方程.了解参数的意义,重点考查直线参数方程中参数的几何意义及圆、椭圆的参数方程与普通方程的互化,往往与极坐标结合考查.在高考选做题中以解答题的形式考查,难度为中档.1.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式.一般地,可以通过消去参数从参数方程得到普通方程.(2)如果知道变数x,y中的一个与参数t的关系,例如x=f(t),把它代入普通方程,求出另一个变数与参数的关系y=g(t),那么就是曲
2、线的参数方程.2.常见曲线的参数方程和普通方程点的轨迹普通方程参数方程直线y-y0=tanα(x-x0)(t为参数)圆x2+y2=r2(θ为参数)椭圆+=1(a>b>0)(φ为参数)抛物线y2=2px(p>0)(t为参数)题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)参数方程中的x,y都是参数t的函数.( √ )(2)过M0(x0,y0),倾斜角为α的直线l的参数方程为(t为参数).参数t的几何意义表示:直线l上以定点M0为起点,任一点M(x,y)为终点的有向线段M0M的数量.( √ )(3)方程(θ为参数
3、)表示以点(0,1)为圆心,以2为半径的圆.( √ )(4)已知椭圆的参数方程(t为参数),点M在椭圆上,对应参数t=,点O为原点,则直线OM的斜率为.( × )题组二 教材改编2.曲线(θ为参数)的对称中心( )A.在直线y=2x上B.在直线y=-2x上C.在直线y=x-1上D.在直线y=x+1上答案 B解析 由得所以(x+1)2+(y-2)2=1.曲线是以(-1,2)为圆心,1为半径的圆,所以对称中心为(-1,2),在直线y=-2x上.3.在平面直角坐标系xOy中,若直线l:(t为参数)过椭圆C:(φ为参数)的右顶点,求常数a的值
4、.解 直线l的普通方程为x-y-a=0,椭圆C的普通方程为+=1,∴椭圆C的右顶点坐标为(3,0),若直线l过(3,0),则3-a=0,∴a=3.题组三 易错自纠4.直线l的参数方程为(t为参数),求直线l的斜率.解 将直线l的参数方程化为普通方程为y-2=-3(x-1),因此直线l的斜率为-3.5.设P(x,y)是曲线C:(θ为参数,θ∈[0,2π))上任意一点,求的取值范围.解 由曲线C:(θ为参数),得(x+2)2+y2=1,表示圆心为(-2,0),半径为1的圆.表示的是圆上的点和原点连线的斜率,设=k,则原问题转化为y=kx和圆
5、有交点的问题,即圆心到直线的距离d≤r,所以≤1,解得-≤k≤,所以的取值范围为.6.在直角坐标系xOy中,以O为极点,x轴的正半轴为极轴建立极坐标系.已知直线l的极坐标方程为ρ(sinθ-3cosθ)=0,曲线C的参数方程为(t为参数),l与C相交于A,B两点,求
6、AB
7、的值.解 由ρ(sinθ-3cosθ)=0,得y=3x,由得-x2+y2=4,联立得即或∴A,B,∴
8、AB
9、=2.题型一 参数方程与普通方程的互化1.在平面直角坐标系xOy中,圆C的参数方程为(t为参数).在极坐标系(与平面直角坐标系xOy取相同的长度单位,且以原点O
10、为极点,以x轴正半轴为极轴)中,直线l的方程为ρsin=m(m∈R).(1)求圆C的普通方程及直线l的直角坐标方程;(2)设圆心C到直线l的距离等于2,求m的值.解 (1)消去参数t,得到圆C的普通方程为(x-1)2+(y+2)2=9.由ρsin=m,得ρsinθ-ρcosθ-m=0,所以直线l的直角坐标方程为x-y+m=0.(2)依题意,圆心C到直线l的距离等于2,即=2,解得m=-3±2.2.在《圆锥曲线论》中,阿波罗尼奥斯第一次从一个对顶圆锥(直或斜)得到所有的圆锥曲线,并命名了椭圆(ellipse)、双曲线(hyperboler
11、)和抛物线(parabola),在这本晦涩难懂的书中有一个著名的几何问题:“在平面上给定两点A,B,设P点在同一平面上且满足=λ(λ>0且λ≠1),P点的轨迹是圆.”这个圆我们称之为“阿波罗尼奥斯圆”.已知点M与长度为3的线段OA两端点的距离之比为=,建立适当坐标系,求出M点的轨迹方程并化为参数方程.解 由题意,以OA所在直线为x轴,过O点作OA的垂线为y轴,建立直角坐标系,设M(x,y),则O(0,0),A(3,0).因为=,即=,化简得(x+1)2+y2=4,所以点M的轨迹是以(-1,0)为圆心,2为半径的圆.由圆的参数方程可得思维
12、升华消去参数的方法一般有三种(1)利用解方程的技巧求出参数的表达式,然后代入消去参数.(2)利用三角恒等式消去参数.(3)根据参数方程本身的结构特征,灵活的选用一些方法从整体上消去参数.将参数方程化为普通方
此文档下载收益归作者所有