2017-2018版高中数学 第1章 导数及其应用 1.4 导数在实际生活中的应用学案 苏教版选修2-2.doc

2017-2018版高中数学 第1章 导数及其应用 1.4 导数在实际生活中的应用学案 苏教版选修2-2.doc

ID:56402707

大小:219.50 KB

页数:10页

时间:2020-06-23

2017-2018版高中数学 第1章 导数及其应用 1.4 导数在实际生活中的应用学案 苏教版选修2-2.doc_第1页
2017-2018版高中数学 第1章 导数及其应用 1.4 导数在实际生活中的应用学案 苏教版选修2-2.doc_第2页
2017-2018版高中数学 第1章 导数及其应用 1.4 导数在实际生活中的应用学案 苏教版选修2-2.doc_第3页
2017-2018版高中数学 第1章 导数及其应用 1.4 导数在实际生活中的应用学案 苏教版选修2-2.doc_第4页
2017-2018版高中数学 第1章 导数及其应用 1.4 导数在实际生活中的应用学案 苏教版选修2-2.doc_第5页
资源描述:

《2017-2018版高中数学 第1章 导数及其应用 1.4 导数在实际生活中的应用学案 苏教版选修2-2.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、1.4导数在实际生活中的应用学习目标 1.了解导数在解决实际问题中的作用.2.掌握利用导数解决简单的实际生活中的优化问题.知识点 生活中的优化问题1.生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为__________.2.利用导数解决优化问题的实质是____________.3.解决优化问题的基本思路是:上述解决优化问题的过程是一个典型的________过程.类型一 面积、容积的最值问题例1 请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A

2、BCD四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E,F在AB上是被切去的等腰直角三角形斜边的两个端点,设AE=FB=xcm.(1)若广告商要求包装盒侧面积S(cm2)最大,则x应取何值?(2)若广告商要求包装盒容积V(cm3)最大,则x应取何值?并求出此时包装盒的高与底面边长的比值.反思与感悟 (1)这类问题一般用面积公式,体积公式等作等量关系,求解时应选取合理的边长x作自变量,并利用题目中量与量之间的关系表示出其他有关边长,这样函数关系式就列出来了.(2)这类问题中,函数的定义域一般是保证各边(或线段)为正,建立x的不等式(组)

3、求定义域.跟踪训练1 某市在市内主干道北京路一侧修建圆形休闲广场.如图,圆形广场的圆心为O,半径为100m,并与北京路一边所在直线l相切于点M.点A为上半圆弧上一点,过点A作l的垂线,垂足为点B.市园林局计划在△ABM内进行绿化.设△ABM的面积为S(单位:m2),∠AON=θ(单位:弧度).(1)将S表示为θ的函数;(2)当绿化面积S最大时,试确定点A的位置,并求最大面积.      类型二 利润最大问题例2 已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元.设该公司一年内生产该品牌服装x千件并全部销售完,每千

4、件的销售收入为R(x)万元,且R(x)=(1)求年利润W(万元)关于年产量x(千件)的函数解析式;(2)当年产量为多少千件时,该公司在这一品牌服装的生产中所获得的年利润最大,并求出最大值.      反思与感悟 解决此类有关利润的实际应用题,应灵活运用题设条件,建立利润的函数关系,常见的基本等量关系有(1)利润=收入-成本;(2)利润=每件产品的利润×销售件数.跟踪训练2 某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式y=+10(x-6)2,其中3

5、克时,每日可售出该商品11千克.(1)求a的值;(2)若该商品的成本为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大.   类型三 费用(用材)最省问题例3 已知A、B两地相距200km,一只船从A地逆水行驶到B地,水速为8km/h,船在静水中的速度为vkm/h(8

6、意义以及最值问题所研究的对象.正确书写函数表达式,准确求导,结合实际作答.(2)利用导数的方法解决实际问题,当在定义区间内只有一个点使f′(x)=0时,如果函数在这点有极大(小)值,那么不与端点值比较,也可以知道在这个点取得最大(小)值.跟踪训练3 为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=(0≤x≤10),若不建隔热层,每年能源消耗费用为8万元.设f(x)

7、为隔热层建造费用与20年的能源消耗费用之和.(1)求k的值及f(x)的表达式;(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.    1.方底无盖水箱的容积为256,则最省材料时,它的高为________.2.某产品的销售收入y1(万元)是产品x(千台)的函数,y1=17x2;生产总成本y2(万元)也是x的函数,y2=2x3-x2(x>0),为使利润最大,应生产________千台.3.将一段长100cm的铁丝截成两段,一段弯成正方形,一段弯成圆形,当正方形与圆形面积之和最小时,圆的周长为________cm.4.某商品每件成本9元,

8、售价30元,每星期卖出432件.如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低额x(单位:元,0≤x≤21)的平

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。