欢迎来到天天文库
浏览记录
ID:56358331
大小:179.00 KB
页数:3页
时间:2020-06-12
《高中数学一题多变问题.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、一题多变典型实例设椭圆过点,且左焦点为.(1)求椭圆的方程;(2)当过点的动直线与椭圆相交于两不同点时,在线段上取点,满足.证明:点总在定直线上.解答:第(1)题易得椭圆方程为(过程略);主要第(2)题证明如下:ABPQ如图,设,由三角形的相似得:化简得:现设直线(k必存在)代入椭圆方程,得:由韦达定理,得:代入式,化简得:,代入直线方程,得:两式联立,消去,得:,即点在定直线上,得证.变1:设椭圆,当过点(其中)的动直线与椭圆相交于两不同点时,在线段上取点,满足证明:点在定直线上.变2:设双曲线,过点(其中)
2、的动直线与双曲线相交于两不同点,在线段上取点,满足证明:点在定直线上.证明:这两个命题可以一起证。统一设椭圆和双曲线的方程为(,且不同时小于)(注:实际上还可包括圆);设直线(注:当k不存在的情况需另行证明,这里略),两式联立,消去,得:设,得现设,由条件知,点在线段外,不失一般性,在图象中,从左到右这四个字母的顺序是,故由三角形的相似得:,即现韦达定理代入式,化简得:,化简得:点在直线上,得证.变3:设抛物线,当过点(其中)的动直线与抛物线相交于两不同点,在线段上取点,满足证明:点在定直线上.证明:设直线,代
3、入抛物线方程,得:设,得现设,由条件知,点在线段外,不失一般性,在图象中,从左到右这四个字母的顺序是,故由三角形的相似得:,即:现韦达定理代入式,化简得:,化简得:点在直线上,得证.而由圆锥曲线的对称性知:,所以轴
此文档下载收益归作者所有