高中数学一题多变问题.doc

高中数学一题多变问题.doc

ID:56358331

大小:179.00 KB

页数:3页

时间:2020-06-12

高中数学一题多变问题.doc_第1页
高中数学一题多变问题.doc_第2页
高中数学一题多变问题.doc_第3页
资源描述:

《高中数学一题多变问题.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、一题多变典型实例设椭圆过点,且左焦点为.(1)求椭圆的方程;(2)当过点的动直线与椭圆相交于两不同点时,在线段上取点,满足.证明:点总在定直线上.解答:第(1)题易得椭圆方程为(过程略);主要第(2)题证明如下:ABPQ如图,设,由三角形的相似得:化简得:现设直线(k必存在)代入椭圆方程,得:由韦达定理,得:代入式,化简得:,代入直线方程,得:两式联立,消去,得:,即点在定直线上,得证.变1:设椭圆,当过点(其中)的动直线与椭圆相交于两不同点时,在线段上取点,满足证明:点在定直线上.变2:设双曲线,过点(其中)

2、的动直线与双曲线相交于两不同点,在线段上取点,满足证明:点在定直线上.证明:这两个命题可以一起证。统一设椭圆和双曲线的方程为(,且不同时小于)(注:实际上还可包括圆);设直线(注:当k不存在的情况需另行证明,这里略),两式联立,消去,得:设,得现设,由条件知,点在线段外,不失一般性,在图象中,从左到右这四个字母的顺序是,故由三角形的相似得:,即现韦达定理代入式,化简得:,化简得:点在直线上,得证.变3:设抛物线,当过点(其中)的动直线与抛物线相交于两不同点,在线段上取点,满足证明:点在定直线上.证明:设直线,代

3、入抛物线方程,得:设,得现设,由条件知,点在线段外,不失一般性,在图象中,从左到右这四个字母的顺序是,故由三角形的相似得:,即:现韦达定理代入式,化简得:,化简得:点在直线上,得证.而由圆锥曲线的对称性知:,所以轴

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。