2011-2014年湖南高考数学试题(理科).docx

2011-2014年湖南高考数学试题(理科).docx

ID:56300723

大小:784.37 KB

页数:28页

时间:2020-06-10

2011-2014年湖南高考数学试题(理科).docx_第1页
2011-2014年湖南高考数学试题(理科).docx_第2页
2011-2014年湖南高考数学试题(理科).docx_第3页
2011-2014年湖南高考数学试题(理科).docx_第4页
2011-2014年湖南高考数学试题(理科).docx_第5页
资源描述:

《2011-2014年湖南高考数学试题(理科).docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2011~2014年湖南省高考数学试卷(理科)2011年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若a,b∈R,i为虚数单位,且(a+i)i=b+i,则(D)A.a=1,b=1B.a=−1,b=1C.a=−1,b=−1D.a=1,b=−12.设M={1,2},N={a2},则“a=1”是“N⊆M”则(A)A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件3.设图一是某几何体的三视图,

2、则该几何体的体积为(D)A.π+12B.π+18C.9π+42D.36π+184.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:男女总计爱好402060不爱好203050总计6050110由K2=计算得K2=≈7.8附表:P(K2≥k)0.0500.0100.001k3.8416.63510.828参照附表,得到的正确结论是(C)A.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C.有99%以上的把握认为“爱

3、好该项运动与性别有关”D.有99%以上的把握认为“爱好该项运动与性别有关”5.设双曲线−=1(a>0)的渐近线方程为3x±2y=0,则a的值为(C)A.4B.3C.2D.16.由直线x=−,x=,y=0与曲线y=cosx所围成的封闭图形的面积为(D)A.B.1C.D.7.设m>1,在约束条件下,目标函数z=x+my的最大值小于2,则m的取值范围为(A)A.(1,1+)B.(1+,+∞)C.(1,3)D.(3,+∞)8.设直线x=t与函数f(x)=x2,g(x)=lnx的图像分别交于点M,N,则当

4、MN

5、达到最小时t的值为(D)

6、A.1B.C.D.【解析】设函数y=f(x)−g(x)=x2−lnx,求导数得y′=2x−=,当0时,y′>0,函数在(,+∞)上为单调增函数,所以当x=时,所设函数的最小值为+ln2,所求t的值为.二、填空题:本大题共8小题,考生作答7小题,每小题5分,共35分,把答案填在答题卡中对应题号后的横线上.(一)选做题(请考生在第9、10、11三题中任选两题作答,如果全做,则按前两题记分)1.在直角坐标系xOy中,曲线C1的参数方程为(α为参数)在极坐标系(与直角坐标系xOy

7、取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,曲线C2的方程为ρ(cosθ−sinθ)+1=0,则C1与C2的交点个数为2.2.设x,y∈R,则(x2+)(+4y2)的最小值为9.3.如图2,A,E是半圆周上的两个三等分点,直径BC=4,AD⊥BC,垂足为D,BE与AD相交与点F,则AF的长为.二、必做题(12~16题)4.设Sn是等差数列{an}(n∈N*)的前n项和,且a1=1,a4=7,则S5=81.5.若执行如图3所示的框图,输入x1=1,x2=2,x3=3,=2,则输出的数等于.6.在边长为1的正三角形

8、ABC中,设=2,=3,则∙−.7.如图4,EFGH是以O为圆心,半径为1的圆的内接正方形,将一颗豆子随机地扔到该圆内,用A表示事件“豆子落在正方形EFGH内”,B表示事件“豆子落在扇形OHE(阴影部分)内”,则(1)P(A)=;(2)P(B

9、A)=.8.对于n∈N*,将n表示为n=a0×2k+a1×2k−1+a2×2k−2+⋯+ak−1×21+ak×20,当i=0时,ai=1,当1≤i≤k时,ai为0或1 .记I(n)为上述表示中ai为0的个数,(例如1=1×20,4=1×22+0×21+0×20:故I(1)=0,I(4)=

10、2,则(1)I(12)=2;(2)2I(n)1903.【解析】(1)根据题意,12=1×23+1×22+0×21+0×20,则I(12)=2;(2)127=1×26+1×25+1×24+1×23+1×22+1×21+1×20,设64≤n≤126,且n为整数;则n=1×26+a1×25+a2×24+a3×23+a4×22+a5×21+a6×20,a1,a2,a3,a4,a5,a6中6个数都为0或1,其中没有一个为1时,有C60种情况,即有C60个I(n)=6;其中有一个为1时,有C61种情况,即有C61个I(n)=5;其中有2个

11、为1时,有C62种情况,即有C62个I(n)=4;…=C6026+C61×25+C62×24+C63×23+C64×22+C65×2+1=(2+1)n=36同理可得:=35,…,=31,2I(1)=1;则=1+3+32+…+36==1093.三、解答题:本大题共6小题,共75

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。