数学学习五步法.doc

数学学习五步法.doc

ID:56233641

大小:25.00 KB

页数:2页

时间:2020-03-22

数学学习五步法.doc_第1页
数学学习五步法.doc_第2页
资源描述:

《数学学习五步法.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、数学学习五步法一.旧知迁移练习学生接受新知识前教师应该考察学生是否具备了与新知识有关的知识与技能,这是开展新知探索的必要前提。旧知迁移阶段的练习就是为了达此目的而安排的,同时也为学生学习新知作铺垫。如应用题“相遇问题”的教学,在旧知迁移阶段,教师可设计如下三道题:(1)速度、时间和路程之间的基本关系式是什么?(2)用简便方法计算:18×412×4。(3)甲乙两个小朋友相距10千米,甲每小时行3千米,乙每小时行2千米,两人同时相对行走1小时后还相距多远?2小时后呢?这三道题中,第一题主要为学生小结相遇问题的

2、求解公式“速度和×时间=共走的路程”进行铺垫,第二题则为比较例1的两种解法进行孕伏,第三题为导入新课作准备,并启发学生理解“相遇”的意义和必备条件。在旧知迁移练习的基础上,如何巧妙地导入新课和激发学生的学习兴趣,是教师在组织本阶段教学活动时应考虑的重点。旧知迁移阶段的教学时间要控制在5分钟之内。二.新知形成练习“知识,只有当它靠积极的思维得来,而不是凭记忆得来的时候,才是真正的知识”。所以数学教学应是“数学活动(思维活动)的教学,而不仅是数学活动的结果(数学知识)的教学。”故新知形成阶段的练习一定要呈现概

3、念的形成过程,或结论的发现过程,或公式的推导过程,或解题思路的优选过程。我们认为,把练习仅仅局限于学生解答练习题的活动上,这是对“练习”含义的一种狭义理解。士兵在长官带领下的所有训练叫做练兵,所以我们认为:学生在教师指导下进行的探索、思考、实验、操作、解题等活动均可视为练习。因此新知形成阶段的练习,依教材内容的特征,教师可设计阅读思考题、新知探索的台阶题、新知探索的实验操作题或新知发现题。如“三角形内角和”的教学,教师可设计如下一组练习题:(1)猜一猜:三角形的内角和是多少度?(2)想一想:正方形或长方形

4、对折后分成两个三角形,每个三角形的内角和各是多少度?(3)量一量:任意画一个三角形,用量角器量一量它的每一个内角,看三个内角的和是多少度?(4)拼一拼:把任意一个三角形的三个内角剪下来拼在一起,看拼成了一个什么角?“猜一猜”是为了在新课一开始,提出一个富有挑战性的问题,激起学生已有认知结构与当前研究课题的认知冲突,促使他们以跃跃欲试的态度去解决所提出的问题。后面的“想一想”、“量一量”、“拼一拼”等练习,既展现了数学家发现与验证三角形内角和是180°的过程,又为学生主动获取新知创造了十分有利的条件。新知形

5、成练习阶段,教师的主要任务是对学生的探索、练习活动进行具体的指导和适当的提示,诱导他们在练习的基础上小结出新的知识与技能。这一阶段的时间以15分钟左右为宜。三.新知巩固练习学生通过上一阶段练习形成的知识,一般来说还不完善、不准确,认识也还比较肤浅。新知巩固练习就是要学生通过练习与思考,比较全面、准确地认识新知、理解新知。新知巩固练习的设计,练习题要紧扣新知的重点、难点和疑点。教师可通过变换教材上范例的条件、结论,或转换新知的表述形式、内容,设计出一道道练习题,引导学生从各个不同角度去认识新知的本质特征。如

6、“比的意义”的教学,在新知巩固练习阶段,教师可设计如下思考题:“4比7的结果是‘4/7’,而4比7也可以写成‘4/7’,这两个4/7表示的意思一样吗?”并让学生分组进行讨论。通过讨论与教师的点拨,学生可以从意义上、从表示方法上、从读法上弄清二者的联系和区别。四.新知应用练习这一阶段就是我们常说的课堂作业,时间一般安排10分钟左右。设计这一阶段的练习要体现三多:多层次,练习题由浅入深,呈台阶式;多形式,动态练习与静态练习有机结合,创造生动活泼的练习气氛;多题型,提高学生的练习兴趣。练习题还要尽量与日常生活或

7、工农业生产中的实际问题挂钩,切实提高学生解决实际问题的能力。传统的教学是学生一开始做课堂作业,教师的讲解就完全结束了。这样把教师的讲与学生的练截然分开,信息反馈闭塞,学生做题中出现的错误得不到及时纠正,时间一久,两极分化现象就特别严重。因此五阶段练习教学法强调教师在学生解题后要进行讲解,要用学生中的普遍错例把有关问题讲清讲透,要扶植学生中的独特见解,鼓励学生中的创造性思维。五.后知孕伏练习小学数学教材中的每一知识块都处在一定层次的系统中。这样,无论从纵的还是横的联系上看都存在教学上的先后顺序问题,所以每一

8、节课的教学都应做到知识上前有联系,后有孕伏。据此,五阶段练习教学法要求教师在下课时布置几道与本节新知识紧密相关的后知孕伏题,让学生在课外去做,从而为后继教学奠定较好的基础。如“小数的性质”新授课的教学,后知孕伏阶段的练习可这样设计:(1)31.30与31.31谁大谁小?(2)1.39十分位上的数字是几?1.40十分位上的数字是几?(3)1.39与1.40谁大谁小?1.40与1.41呢?显然,这三道题是在为下一节课上小数的大小比

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。