欢迎来到天天文库
浏览记录
ID:56217852
大小:318.50 KB
页数:31页
时间:2020-03-21
《数学建模论文__抢渡长江.doc》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、数学建模论文__抢渡长江抢渡长江摘要木文应川物理动力运动知识、微积分、图论法,针对不同的竞渡情程况建立了约束性最优解模型,通过分析求解,得出最优的竞渡方案及所用时间,并将模型的应用推广至航空、航海等领域.对于问题(1),根据题目给出了两种具体竞渡情况可以作出相应的矢量三角形,将速度分解,列出等式,即可求得结果.对于问题(2),在假设成立的条件下,建立关于速度的矢量三角形模型,应用比例分析法,从而可分析出两次比赛到达终点人数的百分比差异很人的原因,并得出选手成功到达终点的条件.对于问题(3)以第一题得出的,
2、“如果水速均匀,则通过的最短方式为,速度的人小方向不变,走直线路径”为基础,讨论水流分段速度相等时的方案优劣,并通过多元函数求极值的方法求的给定条件下的具体最优方案。对于问题(4)先从一般情况出发,对最优策略的求得方法进行了探讨,然后结合可计算性,提出了任意水速的变化情况下的最优策略和成绩的算术求解方法和程序求解方法,并按问题(4)的具体条件进行了求解。最后结合实际,通过对模型的分析总结给有意参加竞渡的游泳爱好考提供一些策略,并将动态优化模型应用推广到航空航天和航海等领域.1、问题的重述“渡江”是武汉城市
3、的一张名片.1934年9月9
4、_1,武汉警备旅官兵与体育界人士联手,在武汉第一次举办横渡长江游泳竟赛活动,起点为武昌汉阳门码头,终点设在汉口三北码头,全程约5000米.有44人参加横渡,40人达到终点,张学良将军特意向冠军获得者赠送了一块银盾,上书“力挽狂澜”.2001年,“武汉抢渡长江挑战赛”重现江城.2002年,正式命名为“武汉国际抢渡长江挑战赛”,于每年的5月1日进行.由于水情、水性的不可预测性,这种竞赛更富有挑战性和观赏性.2002年5月1日,抢渡的起点设在武昌汉阳门码头,终点设在汉阳南片咀,江血
5、宽约1160米•据报载,当日的平均水温16.8°C,江水的平均流速为1.89X/秒.参赛的国内外选手共186人(其中专业人员将近一半),仅34人到达终点,第一•名的成绩为14分8秒.除了气象条件外,人部分选手由于路线选择错误,被滚滚的江水冲到下游,而未能准确到达终点.假设在竞渡区域两岸为平行直线,它们之间的垂直距离为1160米,从武昌汉阳门的正对岸到汉阳南斥咀的距离为1000米,见题LI示意图•请你们通过数学建模來分析上述情况,并冋答以下问题:(1)假定在竟渡过程屮游泳考的速度人小和方向不变,且竞渡区域每
6、点的流速均为1.89米/秒.试说明2002年第一名是沿着怎样的路线前进的,求她游泳速度的人小和方向•如何根据游泳者自己的速度选择游泳方向,试为一个速度能保持在1.5米/秒的人选择游泳方向,并估计他的成绩.(2)在(1)的假设下,如果游泳者始终以和岸边垂直的方向游,他(她)们能否到达终点?根据你们的数学模型说明为什么1934年和2002年能游到终点的人数的百分比有如此人的差别;给出能够成功到达终点的选手的条件.(3)若流速沿离芹边距离的分布为(设从武昌汉阳门垂百向上为y轴正向):1.47米/秒,0米y200
7、米v(y)2.11米/秒,200米y960米1.47米/秒,960米y1160米游泳者的速度人小(1.5米/秒)仍全程保持不变,试为他选择游泳方向和路线,估计他的成绩.(4)若流速沿离岸边距离为连续分布,例如2.28200y,0y200v(y)2.28,200y9602.28(1160y),960y1160200或你们认为合适的连续分布,如何处理这个问题.(5)用普通人能懂的语言,给有意参加竟渡的游泳爱好者写一份克渡策略的短文.(6)模型还可能有什么其他的应用?2、问题的符号与假设2.1模型的假设(1)竟
8、渡在平血区域进行(2)参赛者的游泳速度给定(3)选于在克渡过稈小状态良好(4)不考虑竟赛当天的天气状况对算手的影响(5)将选手看作质点-2-(6)假设区域两岸平行(7)不考虑地理因素对选于的影响2.2符号说明v为游泳者在竟渡屮的速度人小.0为游泳考在竞渡屮速度方向与河冷的夹角.t为游泳者在竟渡屮的时间.II示竞渡区域两诈的距离1160米.L表示从武昌汉阳门的正对岸到汉阳南岸咀的距离1000米v0表示水流的速度1.89米/秒.vl表示游泳者在水屮的合速度.d表示游泳者的实际路稈.3、问题的分析该问题属于一定
9、约束条件下的动态优化问题•通过对问题由简单到复杂的分析,在相应约束条件下,得到最优解,从而得出竞渡的策略.在问题(1)小,游泳者的速度人小和方向不变且水流速度均为1.89m/s,可以建立相应的矢量三角形模型,又由运动的合成与分解可以分析得出游泳者的竞渡路线(起点与终点的连线),以及在竟渡过稈屮游泳者始终做匀速直线运动.通过以上分析列出水平竖直方向上的等式,便可求解此题.在水速均匀的情况下,可以以水为参照系,则对于任意的游泳情况
此文档下载收益归作者所有