我理解的t和f检验方法

我理解的t和f检验方法

ID:5616853

大小:67.00 KB

页数:6页

时间:2017-12-20

我理解的t和f检验方法_第1页
我理解的t和f检验方法_第2页
我理解的t和f检验方法_第3页
我理解的t和f检验方法_第4页
我理解的t和f检验方法_第5页
资源描述:

《我理解的t和f检验方法》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、F检验是通过比较两组数据的反方差,来判断两组数据是否存在较大的偶然误差,是精密度检验。而T检验是与标准值比较,用于判断某一分析方法或操作过程是否存在较大的误差。显著性检验的顺序应该为先进行F检验,确认两组数据没有显著性差异之后,在进行两组数据均值是否存在系统误差的T检验。简介  t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。它与Z检验、卡方检验并列。  t检验是戈斯特为了观测酿酒质量而发明的。戈斯特在位于都柏林的健力士酿酒厂担任统计学家,基于ClaudeGuinness聘用从牛津大学和剑桥大学出来的最好的毕业生以将生物化学及统计学应用到健力士工业程序的创新政策

2、。戈斯特于1908年在Biometrika上公布t检验,但因其老板认为其为商业机密而被迫使用笔名(学生)。实际上,戈斯特的真实身份不只是其它统计学家不知道,连其老板也不知道。编辑本段t检验的分类及原理t检验  t检验分为单总体检验和双总体检验。  单总体t检验时检验一个样本平均数与一个已知的总体平均数的差异是否显著。当总体分布是正态分布,如总体标准差未知且样本容量小于30,那么样本平均数与总体平均数的离差统计量呈t分布。  单总体t检验统计量为:      双总体t检验是检验两个样本平均数与其各自所代表的总体的差异是否显著。双总体t检验又分为两种情况,一是独立样本t检验,一是配对样本t检验

3、。  独立样本t检验统计量为:    S1和S2为两样本方差;n1和n2为两样本容量。(上面的公式是1/n1+1/n2不是减!)  配对样本t检验统计量为:  t检验的适用条件  (1)已知一个总体均数;  (2)可得到一个样本均数及该样本标准差;  (3)样本来自正态或近似正态总体。t检验步骤  以单总体t检验为例说明:  问题:难产儿出生体重n=35,u0=3.42,S=0.40,一般婴儿出生体重μ0=3.30(大规模调查获得),问相同否?  解:1.建立假设、确定检验水准α  H0:μ=μ0(无效假设,nullhypothesis)  H1:(备择假设,alternativehypo

4、thesis,)  双侧检验,检验水准:α=0.05  2.计算检验统计量,v=n-1=35-1=34  3.查相应界值表,确定P值,下结论  查附表1,t0.05/2.34=2.032,t0.05,按α=0.05水准,不拒绝H0,两者的差别无统计学意义  t检验的来历  当总体呈正态分布,如果总体标准差未知,而且样本容量<30,那么这时一切可能的样本平均数与总体平均数的离差统计量呈分布。  检验是用分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。检验分为单总体检验和双总体检验。  1.单总体检验  单总体检验是检验一个样本平均数与一已知的总体平

5、均数的差异是否显  著。当总体分布是正态分布,如总体标准差未知且样本容量<30,那么样本平均数与总体平均数的离差统计量呈分布。检验统计量为:  。  如果样本是属于大样本(>30)也可写成:  。  在这里,为样本平均数与总体平均数的离差统计量;  为样本平均数;  为总体平均数;  为样本标准差;  为样本容量。  例:某校二年级学生期中英语考试成绩,其平均分数为73分,标准差为17分,期末考试后,随机抽取20人的英语成绩,其平均分数为79.2分。问二年级学生的英语成绩是否有显著性进步?  检验步骤如下:  第一步建立原假设=73  第二步计算值  第三步判断  因为,以0.05为显著性

6、水平,,查值表,临界值,而样本离差的1.63小与临界值2.093。所以,接受原假设,即进步不显著。  2.双总体检验  双总体检验是检验两个样本平均数与其各自所代表的总体的差异是否显著。双总体检验又分为两种情况,一是相关样本平均数差异的显著性检验,用于检验匹配而成的两组被试获得的数据或同组被试在不同条件下所获得的数据的差异性,这两种情况组成的样本即为相关样本。二是独立样本平均数的显著性检验。各实验处理组之间毫无相关存在,即为独立样本。该检验用于检验两组非相关样本被试所获得的数据的差异性。  现以相关检验为例,说明检验方法。因为独立样本平均数差异的显著性检验完全类似,只不过。  相关样本的检

7、验公式为:  。  在这里,,分别为两样本平均数;  ,分别为两样本方差;  为相关样本的相关系数。  例:在小学三年级学生中随机抽取10名学生,在学期初和学期末分别进行了两次推理能力测验,成绩分别为79.5和72分,标准差分别为9.124,9.940。问两次测验成绩是否有显著地差异?  检验步骤为:  第一步建立原假设=  第二步计算值  =  =3.459。  第三步判断  根据自由度,查值表,。由于实际计算出来的=

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。