欢迎来到天天文库
浏览记录
ID:56166579
大小:414.50 KB
页数:14页
时间:2020-03-18
《2017中考(贵州专版 人教)数学复习 专题12 平面几何基础.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、考点十二:图形的初步认识聚焦考点☆温习理解一、直线、射线和线段1、直线的概念一根拉得很紧的线,就给我们以直线的形象,直线是直的,并且是向两方无限延伸的。2、射线的概念直线上一点和它一旁的部分叫做射线。这个点叫做射线的端点。3、线段的概念直线上两个点和它们之间的部分叫做线段。这两个点叫做线段的端点。4、直线的性质(1)直线公理:经过两个点有一条直线,并且只有一条直线。它可以简单地说成:过两点有且只有一条直线。(2)过一点的直线有无数条。(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。(4)直线上有无穷多个点。(5)两条不同的直线至多有一个公共点
2、。5、线段的性质(1)线段公理:所有连接两点的线中,线段最短。也可简单说成:两点之间线段最短。(2)连接两点的线段的长度,叫做这两点的距离。(3)线段的中点到两端点的距离相等。(4)线段的大小关系和它们的长度的大小关系是一致的。6、线段垂直平分线的性质定理及逆定理垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等。逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。二、相交线1、相交线中的角两条直线相交,可以得到四个角,我们把两条直线相交所构成的四个角中,有公共顶
3、点但没有公共边的两个角叫做对顶角。我们把两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角叫做临补角。临补角互补,对顶角相等。直线AB,CD与EF相交(或者说两条直线AB,CD被第三条直线EF所截),构成八个角。其中∠1与∠5这两个角分别在AB,CD的上方,并且在EF的同侧,像这样位置相同的一对角叫做同位角;∠3与∠5这两个角都在AB,CD之间,并且在EF的异侧,像这样位置的两个角叫做内错角;∠3与∠6在直线AB,CD之间,并侧在EF的同侧,像这样位置的两个角叫做同旁内角。2、垂线两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直
4、。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。直线AB,CD互相垂直,记作“AB⊥CD”(或“CD⊥AB”),读作“AB垂直于CD”(或“CD垂直于AB”)。垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。性质2:直线外一点与直线上各点连接的所有线段中,垂线段最短。简称:垂线段最短。三、平行线1、平行线的概念在同一个平面内,不相交的两条直线叫做平行线。平行用符号“∥”表示,如“AB∥CD”,读作“AB平行于CD”。同一平面内,两条直线的位置关系只有两种:相交或平行。2、平行线公理及其推论平行公理:经过直线外一点,有且只有一条直线与这条直线平
5、行。推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行。3、平行线的判定平行线的判定公理:两条直线被第三条直线所截,如果同位角相等,那么两直线平行。简称:同位角相等,两直线平行。平行线的两条判定定理:(1)两条直线被第三条直线所截,如果内错角相等,那么两直线平行。简称:内错角相等,两直线平行。(2)两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。简称:同旁内角互补,两直线平行。4、平行线的性质(1)两直线平行,同位角相等。(2)两直线平行,内错角相等。(3)两直线平行,同旁内角互补。四、命题、定理、证明1、命题的概念判断一件事情的语句,
6、叫做命题。2、命题的分类:按正确、错误与否分为:真命题和假命题所谓正确的命题就是:如果题设成立,那么结论一定成立的命题。所谓错误的命题就是:如果题设成立,不能证明结论总是成立的命题。3、公理人们在长期实践中总结出来的得到人们公认的真命题,叫做公理。4、定理用推理的方法判断为正确的命题叫做定理。5、证明判断一个命题的正确性的推理过程叫做证明。名师点睛☆典例分类考点典例一、直线、射线、线段【例1】如图,经过刨平的木析上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线.能解释这一实际问题的数学知识是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.在
7、同一平面内,过一点有且只有一条直线与已知直线垂直【答案】A.【解析】经过刨平的木板上的两个点,能弹出一条笔直的墨线此操作的依据是两点确定一条直线.故选A.【点睛】根据公理“两点确定一条直线”,来解答即可.【举一反三】1.如图,C、D是线段AB上的两点,且D是线段AC的中点,若AB=10cm,BC=4cm,则AD的长为( )A.2cmB.3cmC.4cmD.6cm【答案】B.考点典例二、平行线【例2】(2015.山东威海,第14题,4分)如图,直线a∥b,∠1=110°,∠2=55°,则∠3的度数为 .【答案】55°【解析】试题分析:由a∥b,得∠3+∠2=
8、∠1,所以∠3=110°-55°=55
此文档下载收益归作者所有