欢迎来到天天文库
浏览记录
ID:56156358
大小:197.00 KB
页数:3页
时间:2020-06-20
《江苏省白蒲中学2013高一数学 函数教案6 苏教版.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第六教时(若时间不够,可将部分内容延至第七教时)教材:函数图象;《教学与测试》第19课目的:要求学生根据函数解析式作出它们的图象,并且能根据图象分析函数的性质;同时了解图象的简单变换(平移变换和对称变换)。过程:一、复习:函数有哪三种表示方法?今天主要研究函数的图象。二、例一、画出下列函数的图象。(《教学与测试》P39)oxy123-111。2。解:解:oxy123-11注意:由于定义域从而导致函数图象只是若干个孤立点。-1-0.510.5yox3。注意:先写成分段函数再作图。解:定义域为且x¹强调:定义域十分重要。三、例二、根据所给定义域,画出函数的
2、图象。-2-1O1234yx1234-2-1O1234yx1234-2-1O1234yx1234551。2。3。且xÎZ-3-四、关于分段函数的图象-1-2py例三、已知画出它的图象,并求f(1),f(-2)。解:f(1)=3×12-2=1f(-2)=-1五、关于函数图象的变换1.平移变换研究函数y=f(x)与y=f(x+a)+b的图象之间的关系例四、函数-2和的图象分别是由函数的图象经过如何变化得到的。解:1)将的图象沿x轴向左平移1个单位再沿y轴向下平移2个单位得-2的图象;-22)将的图象沿x轴向右平移个单位再沿y轴向上平移1个单位得函数的图象。
3、小结:1。将函数y=f(x)的图象向左(或向右)平移
4、k
5、个单位(k>0向左,k<0向右)得y=f(x+k)图象;2.将函数y=f(x)的图象向上(或向下)平移
6、k
7、个单位(k>0向上,k<0向下)得y=f(x)+k图象。2、对称变换函数y=f(x)与y=-f(x)、y=f(-x)及y=-f(-x)的图象分别关于x轴、y轴、原点对称yxOyxOyxOy=-f(x)y=f(-x)y=-f(-x)例五、设(x>0)作出y=-f(x)、y=f(-x)及y=-f(-x)的图象。横坐标不变,纵坐标纵坐标不变,横坐标横坐标与纵坐标都取取相反数取相反数原来相反数-3
8、-图象关于轴对称图象关于轴对称图象关于原点对称3、翻折变换由函数y=f(x)的图象作出y=
9、f(x)
10、与y=f(
11、x
12、)的图象例六、作出函数y=
13、x2-2x-1
14、及y=
15、x
16、2-2
17、x
18、-1的图象。解:分析1:当x2-2x-1≥0时,y=x2-2x-1当x2-2x-1<0时,y=-(x2-2x-1)yx-1O12321-1-2步骤:1.作出函数y=x2-2x-1的图象2.将上述图象x轴下方部分以x轴为对称轴向上翻折(上方部分不变),即得y=
19、x2-2x-1
20、的图象。分析2:当x≥0时y=x2-2x-1当x<0时y=x2+2x-1即y=(-x)2-2(-
21、x)-1yx-3-2-1O123321-1-2-3步骤:1)作出y=x2-2x-1的图象;2)y轴右方部分不变,再将右方部分以y轴为对称轴向左翻折,即得y=
22、x
23、2-2
24、x
25、-1的图象。小结:将y=f(x)的图象,x轴上方部分不变,下方部分以x轴为对称轴向上翻折即得y=
26、f(x)
27、的图象;将y=f(x)的图象,y轴右方部分不变,以y轴为对称轴将右方部分向左翻折即得y=f(
28、x
29、)的图象。六、作业:《教学与测试》P407、8《课课练》P533P549《精编》P8324、25、26(第26题应作启发:)-3-
此文档下载收益归作者所有