欢迎来到天天文库
浏览记录
ID:56149483
大小:664.00 KB
页数:6页
时间:2020-06-20
《江苏省射阳县特庸中学七年级上数学《正方体的展开和折叠》学案(无答案) 新人教版.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、正方体的展开和折叠问题的解题规律正方体的展开和折叠问题在中考题中经常出现,多见于填空题和选择题。这种题有利于培养学生的空间观念和实践、探索能力.本文对几种常见类型的解题规律作初步的探讨.一、判断给定的图形是否是正方体的展开图例1:将一个正方体纸盒沿棱剪开并展开,共有_______种不同形式的展开图。解:具体有以下11种图形,1.“一·四·一”型,中间一行4个作侧面,两边各1个分别作上下底面,共有6种.2.“二·三·一”(或一·三·二)型,中间3个作侧面,上(或下)边2个那行,相连的正方形作底面,不相连的再下折作另一个侧面,共3种.3.“二·二·二”型,
2、成阶梯状.4.“三·三”型,两行只能有1个正方形相连.二、找正方体相邻或相对的面1.从展开图找.例2水平放置的正方体六个面分别用“前面、后面、上面、下面、左面、右面”表示。如图是一个正方体的平面展开图,若图中的“进”表示正方体的前面,“步”表示右面,“习”表示下面,则“祝”、“你”、“学”分别表示正方体的________。解析:“祝”与“进”,“你”与“习”中间都隔一个正方形,是相对的面,所以“学”与“步”也是相对的面。答案:后面、上面、左面例3右图是一个正方体的展开图,如果正方体相对的面上标注的值,那么____,_______。解析:“2x”与“8”
3、中间都隔一个正方形,是相对的面,“y”与“10”是相对的面。所以,x=4,y=10。2.从立体图找.例4:如图是3个完全相同的正方体的三种不同放置方式,下底面依次是______。解析先找相邻的面,余下就是相对的面.上图出现最多的是3,和3相连的有2、4、5、6,余下的1就和3相对.再看6,和6相邻的有2、3、4,和3相对的是1,必和6相邻,故6和5相对,余下是4和2相对,下底面依次是2、5、1.三、由带标志的正方体图去判断是否属于它的展开图例5小丽制作了一个如下左图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的平面展开图可能是()解析基本方法是
4、先看上下,后定左右,故选(A).例6下面各图都是正方体的表面展开图,若将它们折成正方体,则其中两个正方体各面图案完全一样,它们是_______。解析首先找出上下两底,(1)是+和*,(2)是+和*,(3)(4)都是□和×,排除(1)(2),再检查侧面,(3)(4)顺序相同,所以选(3)(4).巧记口诀确定正方体表面展开图6个相连的正方形组成的平面图形,经折叠能否围城正方体问题,是近年来中考常考题型。同学们在学习这一知识时常感到无从下手,现将确定正方体展开图的方法以口诀的方式总结出来,供大家参考:正方体盒巧展开,六个面儿七刀裁。十四条边布周围,十一类图记
5、分明:四方成线两相卫,六种图形巧组合;跃马失蹄四分开;两两错开一阶梯。对面相隔不相连,识图巧排“7”、“凹”、“田”。现将口诀的内涵解释如下:将一个正方体盒的表面沿某些棱剪开,展开成平面图形,需剪7刀,故平面展开图中周围有14条边长共有十一种展开图:一、四方成线两相卫,六种图形巧组合(1)(2)(3)(4)(5)(6)以上六种展开图可归结为四方连线,即,另外两个小方块在四个方块的上下两侧,共六种情况。二、跃马失蹄四分开(1)(2)(3)(4)以上四种情况可归结为五个小方块组成“三二相连”的基本图形(如图),另外一个小方块的位置有四种情况,即图中四个小方
6、块中的任意一个,这一图形有点像失蹄的马,故称为“跃马失蹄”。三、两两错开一阶梯这一种图形是两个小方块一组,两两错开,像阶梯一样,故称“两两错开一阶梯”。四、对面相隔不相连这是确定展开图的又一种方法,也是确定展开图中的对面的一种方法。如果出现三个相连,则1号面与3号面是对面,中间隔了一个2号面,并且是对面的一定不相连。123五、识图巧排“7”、“凹”、“田”12345(1)(2)(3)这里介绍的是一种排除法。如果图中出现象图(1)中的“7”形结构的图形不可能是正方体展开图的,因为图中1号面与3号面是对面,3号面又与5号面是对面,出现矛盾。如果图中出现象图
7、(2)中的“田”形结构的图形不可能是正方体展开图的,因为同一顶点处不可能出现四个面的。如果图中出现象图(3)中的“凹”形结构的图形不可能是正方体展开图的,因为如果把该图形折叠起来将有两个面重合。现举例说明:例1.(2004海口市实验区)下面的平面图形中,是正方体的平面展开图的是()解析:本题可用“识图巧排‘7’、‘田’、‘凹’”来解决。A、D都有“凹”形结构,B有“田”形结构,故应选C例2.(2004扬州)马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如右图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在右图中的拼接图形上
8、再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(注:①只需添加一个符
此文档下载收益归作者所有