《函数的单性》说课稿.doc

《函数的单性》说课稿.doc

ID:56133240

大小:63.50 KB

页数:7页

时间:2020-06-20

《函数的单性》说课稿.doc_第1页
《函数的单性》说课稿.doc_第2页
《函数的单性》说课稿.doc_第3页
《函数的单性》说课稿.doc_第4页
《函数的单性》说课稿.doc_第5页
资源描述:

《《函数的单性》说课稿.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、《函数的单调性》说课稿江苏省扬州大学附属中学陆萍  尊敬的各位评委、各位老师大家好!我叫陆萍,来自江苏省扬州大学附属中学,我说课的题目是《函数的单调性》,我将从四个方面来阐述我对这节课的设计.   一、教材分析 函数的单调性是函数的重要性质.从知识的网络结构上看,函数的单调性既是函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性等内容的基础,在研究各种具体函数的性质和应用、解决各种问题中都有着广泛的应用.函数单调性概念的建立过程中蕴涵诸多数学思想方法,对于进一步探索、研究函数的其

2、他性质有很强的启发与示范作用. 根据函数单调性在整个教材内容中的地位与作用,本节课教学应实现如下教学目标: 知识与技能 使学生理解函数单调性的概念,初步掌握判别函数单调性的方法; 过程与方法 引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力. 情感态度与价值观 在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨

3、的科学态度.   根据上述教学目标,本节课的教学重点是函数单调性的概念形成和初步运用.虽然高一学生已经有一定的抽象思维能力,但函数单调性概念对他们来说还是比较抽象的.因此,本节课的学习难点是函数单调性的概念形成.   二、教法学法 为了实现本节课的教学目标,在教法上我采取了: 1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性. 2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念. 3、在鼓励学生主

4、体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达. 在学法上我重视了: 1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃. 2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力.   三、教学过程    函数单调性的概念产生和形成是本节课的难点,为了突破这一难点,在教学设计上采用了下列四个环节.   (一)创设情境,提出问题   (问题情境)(播放中央电视台天气预报的音乐)

5、.如图为某地区2006年元旦这一天24小时内的气温变化图,观察这张气温变化图:           [教师活动]引导学生观察图象,提出问题: 问题1:说出气温在哪些时段内是逐步升高的或下降的?    问题2:怎样用数学语言刻画上述时段内“随着时间的增大气温逐渐升高”这一特征?   [设计意图]问题是数学的心脏,问题是学生思维的开始,问题是学生兴趣的开始.这里,通过两个问题,引发学生的进一步学习的好奇心.   (二)探究发现建构概念   [学生活动]对于问题1,学生容易给出答案.问题2对学生来说较为抽

6、象,不易回答.   [教师活动]为了引导学生解决问题2,先让学生观察图象,通过具体情形,例如,“t1=8时,f(t1)=1,t2=10时,f(t2)=4”这一情形进行描述.引导学生回答:对于自变量8<10,对应的函数值有1<4.举几个例子表述一下.然后给出一个铺垫性的问题:结合图象,请你用自己的语言,描述“在区间[4,14]上,气温随时间增大而升高”这一特征. 在学生对于单调增函数的特征有一定直观认识时,进一步提出: 问题3:对于任意的t1、t2∈[4,16]时,当t1

7、f(t2)呢?   [学生活动]通过观察图象、进行实验(计算机)、正反对比,发现数量关系,由具体到抽象,由模糊到清晰逐步归纳、概括、抽象出单调增函数概念的本质属性,并尝试用符号语言进行初步的表述.   [教师活动]为了获得单调增函数概念,对于不同学生的表述进行分析、归类,引导学生得出关键词“区间内”、“任意”、“当时,都有”.告诉他们“把满足这些条件的函数称之为单调增函数”,之后由他们集体给出单调增函数概念的数学表述.提出: 问题4:类比单调增函数概念,你能给出单调减函数的概念吗? 最后完成单调性和

8、单调区间概念的整体表述.   [设计意图]数学概念的形成来自解决实际问题和数学自身发展的需要.但概念的高度抽象,造成了难懂、难教和难学,这就需要让学生置身于符合自身实际的学习活动中去,从自己的经验和已有的知识基础出发,经历“数学化”、“再创造”的活动过程.刚升入高一的学生已经具备了一定的几何形象思维能力,但抽象思维能力不强.从日常的描述性语言概念升华到用数学符号语言精确刻画概念是本节课的难点.   (三)自我尝试运用概念 1.为了理解函数单调性的概念,及时地进行运用是

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。