资源描述:
《曾祥端的案例.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、松林学校教学案例教师姓名曾祥端案例学科 数学案例班级八年级 记录时间2013年11月案例主题四边形ABCD与⊙O的关系 案例背景结合《几何画板》的使用导出了圆内接四边形的性质,在这一过程中用到了许多数学方法(实验,观察,类比,分析,归纳,猜想等),同学们要逐步学会用并关于应用这些方法去探讨有关的数学问题,提高我们的数学实践能力与创新能力。 案例描述探讨性质⑴前面我们已经学习了一类特殊四边形----平行四边形,矩形,菱形,正方形,等腰梯形的性质,那么要探讨圆内接四边形的性质,一般要从哪几个方面入手?⑵打开《几何画板》,让学生动手任意画⊙O和⊙O的内接四边形ABCD。(教师适当指
2、导)⑶量出可试题的所有值(圆的半径和四边形的边,内角,对角线,周长,面积),并观察这些量之间的关系。⑷改变圆的半径大小,这些量有无变化?由(3)观察得出的某些关系有无变化?⑸移动四边形的一个顶点,这些量有无变化?由(3)观察得出的某些关系有无变化?移动四边形的四个顶点呢?移动三个顶点呢?⑹如何用命题的形式表述刚才的实验得出来的结论呢?(让学生回答)性质的证明及巩固练习⑴证明猜想已知:如图1,四边形ABCD内接于⊙O。求证:∠BAD+∠BCD=180°,∠ABC+∠ADC=180°。⑵完善性质①若将线段BC延长到E(如图2),那么,∠DCE与∠BAD又有什么关系呢?②圆的内接四
3、边形的性质定理:圆内接四边形的对角互补,并且任何一个外角都等于它的内对角。②已知:如图3,以等腰△ABC的底边BC为直径的⊙O分别交两腰AB,AC于点E,D,连结DE,求证:DE∥BC。(演示作业本)5.例题讲解引例已知:如图4,AD是△ABC中∠BAC的平分线,它与△ABC的外接圆交于点D。求证:DB=DC。(引例由学生证明并板演)教师先评价学生的板演情况,然后提出,若将已知中的“AD是△ABC中的∠BAC的平分线”改为“AD是△ABC的外角∠EAC的平分线”,又该如何证明?引出例题。小结:为了使学生对所学的内容有一个完整而深刻的印象,让学生组成小组,从概念,性质,方法,特
4、殊性进行讨论,然后对讨论的结果进行归纳。⑴本节课我们学习了圆内接四边形的概念和圆内接四边形的和要性质,要求同学们理解圆内接四边形和四边形的外接圆的概念,理解圆内接四边形的性质定理;并初步应用性质定理进行有关命题的证明和计算。 案例分析1.突出了数学课堂教学中的探索性本课例在引导学生得出圆内接四边形的性质时,通过使用《几何画板》,从而实现了改变圆的半径,移动四边形的顶点等,从而使初中平面几何教学发生了重大的变化,那就是让图形出来说话,充分调动学生的直觉思维。这样一来不仅极大地激发了学生学习的兴趣,而且比过去的教学更能够使学生深刻地理解几何。当然,本教学案例在这方面的探索还是初步
5、的,设想今后通过计算机技术的进一步开发与应用,初中平面几何课能够给学生更多动手的机会,让学生以研究的方式学习几何,进一步突出学生在学习中的主体地位。3.引入了数学开放题在数学教学中还可将一些常规性题目发行为开放题。如教材中有这样一个平面几何题“证明:顺次连接四边形四条边的中点,所得的四边形是平行四边形。”这是一个常规性题目,我们可以把它发行为“画一个四边形是什么样的特殊四边形,并加以证明。”我们还可用计算机来演示一个形状不断变化的四边形,让学生观察它们四条边中点的连线组成一个什么样的特殊四边形,在学生完成猜想和证明过程后,我们进而可提出如下问题:”要使顺次连接四条边的中点所得
6、的四边形是菱形,那么对原来的四边形应有哪些新的要求?如果要使所得的四边形是正方形,还需要有什么新的要求?”通过这些改造,常规题便具有了“开放题”的形式,例题的功能也可更充分地发挥。4.学生学习方式被确定为“发现学习”在学习理论上,按不同的学习方式,可分为接受学习和发现学习。所谓接受学习,是指学习者将别人的经验变成自己的经验的时候,所学习的内容是以定论或确定的形式通过传授者的传授,不需要自己任何方式的独立发现;发现学习则是由学习者自己发现问题和解决问题的一种学习方式,在课堂教学中则主要是指发现学习。尽管发现学习效率比接受学习的效率低,但却十分有利于培养学生发现与创新的意识,鉴于
7、初中学生的身心与教学内容特点,发现学习应是培养创新意识的初中数学课堂教学中学生学习的主要方式。本教学案例中学生的学被确定为发现学习,那么教师的教学行为就应根据学生的这一学习特点来设计相应的教学方法以及教学的组织形式。即教师在指导学生学习概念和原理时,只给他们一些事实和问题,让学生积极思考,独立探索,自己发现并掌握相应的原理和规则。对此本教学案例中圆的内接四边形的概念、性质等均没有直接给学生,而是在教师创设的问题情境中让学生发现而获得。但不足的是本案例似乎在这方面还不够典型,学生学习积极性的发挥与调动亦没