一次函数图像教案课件.ppt

一次函数图像教案课件.ppt

ID:56036166

大小:323.50 KB

页数:20页

时间:2020-06-13

一次函数图像教案课件.ppt_第1页
一次函数图像教案课件.ppt_第2页
一次函数图像教案课件.ppt_第3页
一次函数图像教案课件.ppt_第4页
一次函数图像教案课件.ppt_第5页
资源描述:

《一次函数图像教案课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、一次函数图像与性质1.若正比例函数y=kx(k≠0)经过点(-1,2),则该正比例函数的解析式为y=___________.2.如图,一次函数y=ax+b的图象经过A、B两点,则关于x的不等式ax+b<0的解集是.3.一次函数的图象经过点(1,2),且y随x的增大而减小,则这个函数的解析式可以是.(任写出一个符合题意即可)课前回顾-2xx<2y=-2x+3(等)4.一次函数y=2x-1的图象大致是()5.如果点M在直线y=x-1上,则M点的坐标可以是()A.(-1,0)B.(0,1)C.(1,0)D.(

2、1,-1)课前回顾A.B.C.D.BC一、一次函数的定义:1、一次函数的概念:函数y=_______(k、b为常数,k______)叫做一次函数。当b_____时,函数y=____(k____)叫做正比例函数。kx+b≠0=0≠0思考kxy=kxn+b为一次函数的条件是什么?一.指数n=1二.系数k≠0(1).待定系数法;(2).实际问题的应用一次函数正比例函数解析式图象性质应用y=kx(k≠0)y=kx+b(k,b为常数,且k≠0)k>0k<0k>0k<0yxoyxoxyoyxok>0,b>0k>0,

3、b<0k<0,b>0k<0,b<0yxoxyok>0时,在Ⅰ,Ⅲ象限;k<0时,在Ⅱ,Ⅳ象限.正比例函数是特殊的一次函数k>0,b>0时在Ⅰ,Ⅱ,Ⅲ象限;k>0,b<0时在Ⅰ,Ⅲ,Ⅳ象限k<0,b>0时,在Ⅰ,Ⅱ,Ⅳ象限.k<0,b<0时,在Ⅱ,Ⅲ,Ⅳ象限平行于y=kx,可由它平移而得当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.一、基础问题例1 填空题:(1)有下列函数:①,②y=5x,③,④。其中过原点的直线是_____;函数y随x的增大而增大的是___________;函数y随x

4、的增大而减小的是______;图象过第一、二、三象限的是_____。②①、②、③④③(2)、如果一次函数y=kx-3k+6的图象经过原点,那么k的值为________。(3)、已知y-1与x成正比例,且x=-2时,y=4,那么y与x之间的函数关系式为_________________。k=2方法:待定系数法:①设;②代;③解;④还原解:设一次函数解析式为y=kx+b,把x=1时,y=5;x=6时,y=0代入解析式,得解得∴一次函数的解析式为y=-x+6。方法:待定系数法:①设;②代;③解;④还原例2、已

5、知一次函数y=kx+b(k≠0)在x=1时,y=5,且它的图象与x轴交点的横坐标是6,求这个一次函数的解析式。2.一次函数y=ax+b与y=ax+c(a>0)在同一坐标系中的图象可能是(  )xyoxyoxyoxyoABCD1.已知一次函数y=kx+b,y随着x的增大而减小,且kb<0,则在直角坐标系内它的大致图象是()(A)(B)(C)(D)A二、图像辨析A3.直线y1=kx与直线y2=kx-k在同一坐标系内的大致图象是()k>0k<0k<0不平行k>0-k>0k<0-k<0k<0-k>0(A)(B)

6、(C)(D)C.1、柴油机在工作时油箱中的余油量Q(千克)与工作时间t(小时)成一次函数关系,当工作开始时油箱中有油40千克,工作3.5小时后,油箱中余油22.5千克(1)写出余油量Q与时间t的函数关系式;(2)画出这个函数的图象。解析式为:Q=-5t+40(0≤t≤8)解:(1)设Q=kt+b。把t=0,Q=40;t=3.5,Q=22.5分别代入上式,得解得(2)取点A(0,40),B(8,0),然后连成线段AB,即是所求的图形。4080tQ图象是包括两端点的线段点评:画函数图象时,应根据函数自变量的

7、取值范围来确定图象的范围,比如此题中,因为自变量0≤t≤8,所以图像是一条线段。三、能力提升12.某医药研究所开发了一种新药,在实际验药时发现,如果成人按规定剂量服用,那么每毫升血液中含药量y(毫克)随时间x(时)的变化情况如图所示,当成年人按规定剂量服药后。(1)服药后____时,血液中含药量最高,达到每毫升_______毫克。(2)服药5时,血液中含药量为每毫升____毫克。(3)当x≤2时,y与x之间的函数关系式是_____。(4)当x≥2时,y与x之间的函数关系式是_________。(5)如果

8、每毫升血液中含药量3毫克或3毫克以上时,治疗疾病最有效,那么这个有效时间是___小时。.x/时y/毫克6325O能力提升2263y=3xy=-x+84点评(1)根据图像反映的信息解答有关问题时,首先要弄清楚两坐标轴的实际意义,抓住几个关键点来解决问题;(2)特别注意,第5问中由y=3对应的x值有两个;(3)根据函数图像反映的信息来解答有关问题,比较形象、直观,从中能进一步感受“数形结合思想”。3.如图,矩形ABCD中,AB=6,动点P以2个

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。