欢迎来到天天文库
浏览记录
ID:56035532
大小:347.50 KB
页数:20页
时间:2020-06-18
《江苏省宿迁市中考数学试卷(含答案解析).doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、江苏省宿迁市2018年中考数学试卷一、选择题1.2的倒数是( )A.2B.C.D.-2【答案】B【解析】【分析】倒数定义:乘积为1的两个数互为倒数,由此即可得出答案.【详解】∵2×=1,∴2的倒数是,故选B.【点睛】本题考查了倒数的定义,熟知乘积为1的两个数互为倒数是解题的关键.2.下列运算正确的是( )A.B.C.D.【答案】C【解析】【分析】根据同底数幂的乘法,幂的乘方,同底数幂的除法,合并同类项的法则逐项进行计算即可得.【详解】A.,故A选项错误;B.a2与a1不是同类项,不能合并,故B选项错误;C.,故C选项正确;D.,故D选项错误,故选C.【点睛】本题考查
2、了同底数幂的乘法,幂的乘方,同底数幂的除法,合并同类项等运算,熟练掌握有关的运算法则是解题的关键.3.如图,点D在△ABC的边AB的延长线上,DE∥BC,若∠A=35°,∠C=24°,则∠D的度数是( )A.24°B.59°C.60°D.69°【答案】B【解析】【分析】根据三角形外角性质得∠DBC=∠A+∠C,再由平行线性质得∠D=∠DBC.【详解】∵∠A=35°,∠C=24°,∴∠DBC=∠A+∠C=35°+24°=59°,又∵DE∥BC,∴∠D=∠DBC=59°,故选B.【点睛】本题考查了平行线的性质,三角形外角的性质,熟练掌握相关的性质是解题的关键.4.函数中,
3、自变量x的取值范围是( )A.x≠0B.x<1C.x>1D.x≠1【答案】D【解析】【分析】根据分式有意义的条件:分母不为0,计算即可得出答案.【详解】依题可得:x-1≠0,∴x≠1,故选D.【点睛】本题考查了函数自变量的取值范围,熟知分式有意义的条件是分母不为0是解本题的关键.5.若a<b,则下列结论不一定成立的是( )A.a-1<b-1B.2a<2bC.D.【答案】D【解析】【分析】根据不等式的性质逐项进行判断即可得答案.【详解】A.∵a<b,∴a-1<b-1,正确,故A不符合题意;B.∵a<b,∴2a<2b,正确,故B不符合题意;C.∵a<b,∴,正确,故C不
4、符合题意;D.当a<b<0时,a2>b2,故D选项错误,符合题意,故选D.【点睛】本题考查了不等式的基本性质,熟练掌握不等式的性质是解题的关键.不等式性质1:不等式两边同时加上(或减去)同一个数,不等号方向不变;不等式性质2:不等式两边同时乘以(或除以)同一个正数,不等号方向不变;不等式性质3:不等式两边同时乘以(或除以)同一个负数,不等号方向改变.6.若实数m、n满足,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是( )A.12B.10C.8D.6【答案】B【解析】【分析】根据绝对值和二次根式的非负性得m、n的值,再分情况讨论:①若腰为2,底为4,由三
5、角形两边之和大于第三边,舍去;②若腰为4,底为2,再由三角形周长公式计算即可.【详解】由题意得:m-2=0,n-4=0,∴m=2,n=4,又∵m、n恰好是等腰△ABC的两条边的边长,①若腰为2,底为4,此时不能构成三角形,舍去,②若腰为4,底为2,则周长为:4+4+2=10,故选B.【点睛】本题考查了非负数的性质以及等腰三角形的性质,根据非负数的性质求出m、n的值是解题的关键.7.如图,菱形ABCD的对角线AC、BD相交于点O,点E为边CD的中点,若菱形ABCD的周长为16,∠BAD=60°,则△OCE的面积是( )A.B.2C.D.4【答案】A【解析】【分析】根据菱
6、形的性质得菱形边长为4,AC⊥BD,由一个角是60度的等腰三角形是等边三角形得△ABD是等边三角形;在Rt△AOD中,根据勾股定理得AO=2,AC=2AO=4,根据三角形面积公式得S△ACD=OD·AC=4,根据中位线定理得OE∥AD,根据相似三角形的面积比等于相似比继而可求出△OCE的面积.【详解】∵菱形ABCD的周长为16,∴菱形ABCD的边长为4,∵∠BAD=60°,∴△ABD是等边三角形,又∵O是菱形对角线AC、BD的交点,∴AC⊥BD,在Rt△AOD中,∴AO=,∴AC=2AO=4,∴S△ACD=OD·AC=×2×4=4,又∵O、E分别是中点,∴OE∥AD,∴
7、△COE∽△CAD,∴,∴,∴S△COE=S△CAD=×4=,故选A.【点睛】本题考查了相似三角形的判定与性质,等边三角形的判定与性质,勾股定理,菱形的性质,结合图形熟练应用相关性质是解题的关键.8.在平面直角坐标系中,过点(1,2)作直线l,若直线l与两坐标轴围成的三角形面积为4,则满足条件的直线l的条数是( )A.5B.4C.3D.2【答案】C【解析】【分析】设直线l解析式为:y=kx+b,由l与x轴交于点A(-,0),与y轴交于点B(0,b),依题可得关于k和b的二元一次方程组,代入消元即可得出k的值,从而得出直线条数.【详解】设
此文档下载收益归作者所有