二次函数的概念说课稿.doc

二次函数的概念说课稿.doc

ID:55997574

大小:71.01 KB

页数:5页

时间:2020-03-15

二次函数的概念说课稿.doc_第1页
二次函数的概念说课稿.doc_第2页
二次函数的概念说课稿.doc_第3页
二次函数的概念说课稿.doc_第4页
二次函数的概念说课稿.doc_第5页
资源描述:

《二次函数的概念说课稿.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、二次函数的概念说课稿一、说课内容:新人教版九年级数学下册第一章第一节的二次函数的概念及相关习题二、教材分析:1、教材的地位和作用这节课是在学生已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。二次函数是初中阶段研究的最后一个具体的函数,也是最重要的,在历年来的学业水平测试中占有较大比例。同时,二次函数和以前学过的一元二次方程有着密切的联系。进一步学习二次函数将为它们的解法提供新的方法和途径,并使学生更为深刻的理解“数形结合”的重要思想。而本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。所以这节课在

2、整个教材中具有承上启下的重要作用。2、学情分析从心理特征来说,初中阶段的学生逻辑思维从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。但同时,学生进入九年级之后,平时上课课堂气氛比较沉闷,学生不爱发表自己的见解,所以教者利用本节课比较简单、基础的特点,一方面运用生活实例,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,要创造条件和机会,让学生发表见解,发挥学生学习的主动性。从认知状况来说,学生在此之前已经学习了一次函数、反比例函数、正比例函数,对函数概念已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于二

3、次函数 的理解,(由于其抽象程度较高,)学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。3、教学目标和要求:(1)知识与技能:使学生理解二次函数的概念,掌握根据实际问题列出二次函数关系式的方法,并了解如何根据实际问题确定自变量的取值范围。(2)过程与方法:复习旧知,通过实际问题的引入,经历二次函数概念的探索过程,提高学生解决问题的能力.(3)情感、态度与价值观:通过观察、操作、交流归纳等数学活动加深对二次函数概念的理解,发展学生的数学思维,增强学好数学的信心.4、教学重点:对二次函数概念的理解。5、教学难点:由实际问题确定函数解析

4、式和确定自变量的取值范围。三、 教学方法分析新课改的教学过程始终以学生为学习的主体,教师是学习的组织者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点,本节课我采用启发、讨论以及讲练结合(以练为主)的教学方法,以问题的提出、问题的解决为主线,通过基础的练习题目让学生主动参与课堂学习,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生流出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。四:教学策略:为充分发挥学生的主体性和教师的主导辅助作用,教

5、学过程中设计了八个教学环节:(一)温故知新,激发情趣(二)得出定义,揭示内涵(三)全面剖析,深入理解(四)启发诱导,初步运用(五)强化训练,巩固双基(六)拓展延伸,提高能力(七)归纳小结,强化思想(八)布置作业,引导预习五、教学过程:(一)温故知新,激发情趣1.什么叫函数?我们之前学过了那些函数?(一次函数,正比例函数,反比例函数)2.它们的形式是怎样的?【y=kx+b(k≠0);y=kx(k≠0);y=(k≠0)】【设计意图】复习这些问题是为了帮助学生弄清自变量、函数、常量等概念,加深对函数定义的理解.强调k≠0的条件,以备与二次函数中的a进行比较

6、.(二)、得出定义,揭示内涵函数是研究两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。看下面三个例子中两个变量之间存在怎样的关系。教师提问:以上三个例子所列出的函数与一次函数有何相同点与不同点?【设计意图】通过具体事例,让学生列出关系式,启发学生观察,思考,归纳出二次函数与一次函数的联系:(1)函数解析式均为整式(这表明这种函数与一次函数有共同的特征)。(2)自变量的最高次数是2(这与一次函数不同)。以上函数不同于我们所学过的一次函数,正比例函数,反比例函数,我们就把这种函数称为二次函数。二次函数的定义:形如y=ax2+

7、bx+c(a≠0,a,b,c为常数)的函数叫做二次函数。(三)、全面剖析,深入理解巩固对二次函数概念的理解:1、强调“形如”,即由“形”来定义函数名称。二次函数即y是关于x的二次多项式(关于的x代数式一定要是整式)。2、在y=ax2+bx+c中自变量是x,它的取值范围是一切实数。但在实际问题中,自变量的取值范围是使实际问题有意义的值。(如例1中要求r>0)3、为什么二次函数定义中要求a≠0?(若a=0,ax2+bx+c就不是关于x的二次多项式了)4、二次函数成立的条件?(二次项的系数不等于零,未知数的最高次必须为二次)5、在例3中,二次函数y=20x

8、²+40x+20中,a=20,b=40,c=20.6、b和c是否可以为零?由例1可知,b和c均可为零.  若

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。