欢迎来到天天文库
浏览记录
ID:55925330
大小:213.00 KB
页数:7页
时间:2020-06-15
《复合材料的铺层角度优化.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、基于MSC.Nastran铺层复合材料的铺层角度优化发表时间:2008-6-10作者:杜家政*隋允康*杨月来源:MSC关键字:铺层复合材料 铺层角度 K-S函数 响应面法 结构优化 复合材料具有强度高、重量轻等优点,是航空、航天领域首选的材料之一。铺层复合材料就是将各向异性的纤维层材料按照一定的顺序和角度叠在一起,然后通过模具的压力使各层紧密的贴合在一起成为一个整体。很多有限元软件(如Nastran、Abaqus等)可以对复合材料结构进行准确的分析,而且优化技术也已经广泛的应用于铺层复合材料的设计。但是这两个方面的优点还没有很好的结合起来
2、。本文将K-S函数和响应面方法用于铺层复合材料的优化:以铺层复合材料的铺层角度作为设计变量,以结构刚度最大作为目标函数,采用K-S函数建立优化模型;用响应面法将目标和约束转化为设计变量的显式表达式;以MSC.Patran软件为开发平台,以MSC.Nastran软件为求解器,借助MSC.PCL语言进行编程,开发完成了铺层复合材料铺层角度的优化程序。算例表明程序算法是准确有效的。1引言 铺层复合材料就是将各向异性的纤维层材料按照一定的顺序和角度叠在一起,然后通过模具的压力使各层紧密的贴合在一起成为一个整体。复合材料可能是几层、几十层、甚至
3、上百层,每层的铺层角度对结构的性能(包括刚度、强度、稳定性、振动频率等)影响很大,但是目前还没有一种非常有效的优化方法对铺层角度进行优化。 K-S函数最早是Kreisselmeier和Steinhauser在1979年提出的,他们借助该函数对矢量型性能指标进行优化,进而实现系统控制,将基于K-S函数的矢量型性能优化方法应用到战斗机的“鲁棒”控制循环设计中。后来,K-S函数在不同领域中得到应用和发展。响应面方法(ResponseSurfaceMethodology)是利用综合实验技术解决复杂系统的输入(随机变量)与输出(系统响应)之间关
4、系的一种方法。1951年,Box和Wilson提出响应面方法,后来Box,Hunter,Draper等人对其进行了更加深入的研究。1966年,Hill和Hunter对响应面法进行了一些初步应用。1996年,Khuri和Cornell又对响应面方法进行了比较全面的论述。20世纪90年代后期,Florida大学结构和多学科优化课题组对响应面进行了系统的研究和应用。 本文将K-S函数和响应面方法用于铺层复合材料的优化:以铺层复合材料的铺层角度作为设计变量,以结构刚度最大作为目标函数,采用K-S函数建立优化模型;用响应面法将目标和约束转化为设
5、计变量的显式表达式;以MSC.Patran软件为开发平台,以MSC.Nastran软件为求解器,借助MSC.PCL语言进行编程,开发完成了铺层复合材料铺层角度的优化程序。2用K-S函数建立优化模型 铺层复合材料发铺层数为n,以每一层的铺层角为设计变量,以结构刚度最大为目标函数,以结构最大应力不超过许用应力为约束。如果取一个最大位移点的位移最小为目标,建立优化模型如式(1),有可能出现迭代振荡现象。 (1) 为了避免这种现象,取多个最大位移点的位移最小为目标,建立优化
6、模型如式(2),这就变成了多目标优化问题。 (2) 多目标的优化问题求解比较困难,K-S函数就是将多目标的优化模型转化为单目标的优化模型,优化模型如式(3)。 (3) 为了避免繁琐的推导,将(3)式的目标函数直接看作一个响应,假定: (4) 取目标函数的表达式为不含交叉项的二次函数,具体形式如下: (5) 表达式中有2n+1个参数和,至少需要
7、取2n+1设计点,对每个设计点进行分析,得到各设计点的响应,设计点及相应的响应如下: 采用响应面法确定系数,这样目标函数就是设计变量的显式表达式了,直接将函数转化为标准的二次规划模型,表达式如下: (6) 对上述二次规划进行求解,就可得到,然后通过多次迭代得到最优的铺层角度。 3程序流程及软件开发 铺层复合材料铺层角度的优化程序流程图如图1所示。 首先设置优化参数和输入设计变量的初值,然后建立有限元分析模型进行分析,根据响应面的阶数确定实验点的数量和数值,对所有实验点的分析记过进行分析,采用响应面方法进行拟合
8、得到显式的优化模型,求解优化模型得到新的设计变量,对新设计进行分析,并判断是否收敛,如果不收敛进入下一次循环3数值算例3.1方板弯曲 如图2所示方板,边长200mm,由4层各向异性的材料构
此文档下载收益归作者所有