常用单元的刚度矩阵.doc

常用单元的刚度矩阵.doc

ID:55915486

大小:351.50 KB

页数:11页

时间:2020-06-14

常用单元的刚度矩阵.doc_第1页
常用单元的刚度矩阵.doc_第2页
常用单元的刚度矩阵.doc_第3页
常用单元的刚度矩阵.doc_第4页
常用单元的刚度矩阵.doc_第5页
资源描述:

《常用单元的刚度矩阵.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、由于各点在圆周方向上无位移,因而剪应变和均为零。将应变写成向量的形式,则根据上式,可推导出几何方程其中几何矩阵3.弹性方程和弹性矩阵[D]依照广义虎克定律,同样可以写出在轴对称中应力和应变之间的弹性方程,其形式为所以弹性方程为式中应力矩阵弹性矩阵4.单元刚度矩阵与平面问题相同,仍用虚功原理来建立单元刚度矩阵,其积分式为在柱面坐标系中,将代入,则即为轴对称问题求单元刚度矩阵的积分式。与弹性力学平面问题的三角形单元不同,在轴对称问题中,几何矩阵[B]有的元素(如等)是坐标r、z的函数,不是常量。因此,乘积不能简单地从式

2、的积分号中提出。如果对该乘积逐项求积分,将是一个繁重的工作。一般采用近似的方法:用三角形形心的坐标值代替几何矩阵[B]的r和z的值。用表示在形心处计算出的矩阵[B]。其中只要单元尺寸不太大,经过这样处理引起的误差也不大。被积函数又成为常数,可以提出到积分号外面:式中——三角形的面积。由式可以看出,两轴对称的三角形单元,当形状、大小及方位完全相同而位置不同时,其刚度矩阵也不相同。距离主轴线越远的单元,其刚度越大。这与平面问题不一样。二、等参数的刚度矩阵对一些由曲线轮廓的复杂结构,如果采用直角边单元进行离散,由于用直线

3、代替了曲线,除非网格划分得很细,否则不能获得较高的精度;对另一些应力随坐标急剧变化的结构,采用简单的常应力单元离散时,也必须划分成大量的微小单元,以保证足够的精度。为此引入一种高精度的单元——等参数单元。它既能简化复杂单元划分的工作,又能在满足同样精度的要求时,大大减少使用的单元数。目前流行的大程序中较常用,它成功地解决了许多二维和三维的弹性力学问题。为导出等参数单元的刚度矩阵,首先要建立根据每个单元的形状确定的自然坐标系,然后将位移模式和形状函数都写成自然坐标的函数。一个单元在自然坐标系的点余元整体坐标系的点成一

4、一对应的关系。通过映射,可以将整体坐标系中的图形转化为自然坐标系中的相应徒刑。例如可以将整体坐标系中的一个任意四边形(实际单元)映射到自然坐标系中成为一个正方形(基本单元)。同样也可以将任意四面体、六面体(包括直边和曲边的)分别映射成正四面体和正六面体。这里只介绍较简单的一种平面问题的情况,将整体坐标系中的一个任意四边形映射成自然坐标系中的一个正方体,并导出单元刚度矩阵。其它种单元的映射,可依次原理进行。不再叙述。1.位移模式和形状函数图4-2中的任意四边形单元上,作连接对边中点的直线,取其交点为原点,这两条直线分

5、别为和轴,并令四条边上的和值分别为,建立一个新的坐标系,称之为该单元的自然坐标系。原坐标系XOY称为整体坐标系。在整体坐标系中,自然坐标系非正交,它由任意四边形的形状所确定。图4-19如果将自然坐标系改画成直角坐标系,那么图4-19(a)中的任意四边形单元就成为图4-19(b)所示的正方形。上述两个四边形的点(包括顶点)一一对应,即它们之间相互映射。因此,需要写出整体坐标X、Y和自然坐标之间的坐标转换式,即*四边形四个顶点的坐标值在XOY坐标系中分别为:在坐标系中相应为。将有关数据代入*中的第一式,则有求解上述方程

6、组得:坐标变换方程*成为同理当引入函数后,坐标变换方程成为式中变量的正负号由相应节点的坐标值决定。例如当i=4时,,因此,。下面再来研究函数的特性。对节点,相应的自然坐标值为(-1,-1)。从式中很容易看出,除N1=1外,N2=N3=N4=0。对其余各节点也一样。总而言之,对节点i(i=1,2,3,4),除Ni=1外,其余三个N值均为零。同时,不难看出,即四个节点的Ni函数之和等于1。函数具备上章所介绍的形状函数应满足的条件,可作为本单元的形状函数。采用做形状函数,其位移模式为对比和可以看出:在这种实际单元(任意四

7、边形)中,坐标变换式和位移模式不仅采用了相同的形状函数,而且具有相同的数学模型。这种性质的实际单元称为等参数单元。对用节点位移值ui(或vi等)求单元某一点位移量u(或v等)的插值公式,只要将u(或v等)换成X(或Y等),便成为利用节点值Xi(或Yi等)求相应点坐标X(或Y等)的插值公式。相反也是这样。2.几何矩阵[B]由于几何矩阵[B]通过对位移求偏导数而得出,所以首先必须利用复合函数求导的规则得出下述公式式中,此式称为雅可比矩阵。为了将几何矩阵[B]写成变量的函数,必须将式改写成,同理,从表示单元各点位移与其应

8、变关系的几何方程可知:将式和合并,则对单元(e),任意一点的位移u,v对自然坐标的偏导数可利用上式求出,写成矩阵形式为:式中对于i=1,2,3,4将和代入,则可得出表示在整体坐标系中位移和应变关系的几何方程:式中的几何矩阵[B]是自然坐标的函数:也可利用求得的以及和求出,。3.单元刚度矩阵设单元板厚为t,根据虚功方程有:,此式中几何矩阵[B]和弹性矩阵[D]

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。